1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
5

The rate of flow through an ideal clarifier is 8000m3 /d, the detention time is 1h and the depth is 3m. If a full-length movable

horizontal tray is set 1m below the surface of the water, a) determine the percent removal of particles having a settling velocity of 1m/h. b) Could the removal efficiency of the clarifier to be improved by moving the tray? If so, where should the tray be located and what would be the maximum removal efficiency? c) What effect would moving the tray have if the particle settling velocity were equal to 0.5m/h?
Engineering
1 answer:
Fittoniya [83]3 years ago
7 0

Answer:

a) 35%

b) yes it can be improved by moving the tray near the top

   Tray should be located ( 1 to 2 meters below surface )

   max removal efficiency ≈ 70%

c) The maximum removal will drop as the particle settling velocity = 0.5 m/h

Explanation:

Given data:

flow rate = 8000 m^3/d

Detention time = 1h

depth = 3m

Full length movable horizontal tray :  1m below surface

<u>a) Determine percent removal of particles having a settling velocity of 1m/h</u>

velocity of critical sized particle to be removed = Depth / Detention time

= 3 / 1 = 3m/h

The percent removal of particles having a settling velocity of 1m/h ≈ 35%

<u>b) Determine if  the removal efficiency of the clarifier can be improved by moving the tray, the location of the tray  and the maximum removal efficiency</u>

The tray should be located near the top of the tray ( i.e. 1 to 2 meters below surface ) because here the removal efficiency above the tray will be 100% but since the tank is quite small hence the

Total Maximum removal efficiency

=  percent removal_{above} + percent removal_{below}

= ( d_{a},v_{p} ) . \frac{d_{a} }{depth}  + ( d_{a},v_{p} ) . \frac{depth - d_{a} }{depth}  = 100

hence max removal efficiency ≈ 70%

<u>c) what is the effect of moving the tray would be if the particle settling velocity were equal to 0.5m/h?</u>

The maximum removal will drop as the particle settling velocity = 0.5 m/h

You might be interested in
What is the difference between a refrigeration cycle and a heat pump cycle?
sukhopar [10]

Answer:

In refrigeration cycle heat transfer from inside refrigeration

In heat pump cycle heat transfer from environment

Explanation:

heat cycle is mechanical process use for cool the temperature but

In refrigeration heat transfer from inside of refrigeration that decrease temperature of refrigerator and in heat pump it decrease temperature negligible as compare to refrigerator

5 0
3 years ago
The current entering the positive terminal of a device is i(t)= 6e^-2t mA and the voltage across the device is v(t)= 10di/dtV.
liberstina [14]

Answer:

a) 2,945 mC

b) P(t) = -720*e^(-4t) uW

c) -180 uJ

Explanation:

Given:

                           i (t) = 6*e^(-2*t)

                           v (t) = 10*di / dt

Find:

( a) Find the charge delivered to the device between t=0 and t=2 s.

( b) Calculate the power absorbed.

( c) Determine the energy absorbed in 3 s.

Solution:

-  The amount of charge Q delivered can be determined by:                      

                                       dQ = i(t) . dt

                  Q = \int\limits^2_0 {i(t)} \, dt = \int\limits^2_0 {6*e^(-2t)} \, dt = 6*\int\limits^2_0 {e^(-2t)} \, dt

- Integrate and evaluate the on the interval:

                   = 6 * (-0.5)*e^-2t = - 3*( 1 / e^4 - 1) = 2.945 C

- The power can be calculated by using v(t) and i(t) as follows:

                 v(t) = 10* di / dt = 10*d(6*e^(-2*t)) /dt

                 v(t) = 10*(-12*e^(-2*t)) = -120*e^-2*t mV

                 P(t) = v(t)*i(t) = (-120*e^-2*t) * 6*e^(-2*t)

                 P(t) = -720*e^(-4t) uW

- The amount of energy W absorbed can be evaluated using P(t) as follows:

                 W = \int\limits^3_0 {P(t)} \, dt = \int\limits^2_0 {-720*e^(-4t)} \, dt = -720*\int\limits^2_0 {e^(-4t)} \, dt

- Integrate and evaluate the on the interval:

                  W = -180*e^-4t = - 180*( 1 / e^12 - 1) = -180uJ

6 0
3 years ago
I. Draw the velocity diagram for the instant shown and determine the velocity of
trapecia [35]

Answer:

?????????????????????????????????????

3 0
3 years ago
Time management is a learned behavior.<br> True<br> False
larisa [96]

Answer:

true

Explanation:

3 0
3 years ago
Read 2 more answers
Write the implementation (.cpp file) of the Player class from the previous exercise. Again, the class contains:
hoa [83]

Answer:

//Define the header file

#ifndef PLAYER_H

#define PLAYER_H

//header file.

#include <string>

//Use the standard namespace.

using namespace std;

//Define the class Player.

class Player

{

//Declare the required data members.

string name;

int score;

public:

//Declare the required

//member functions.

void setName(string par_name);

void setScore(int par_score);

string getName();

int getScore();    

}

//End the definition

//of the header file.

#endif

Player.cpp:

//Include the "Player.h" header file,

#include "Player.h"

//Define the setName() function.

void Player::setName(string par_name)

{

name = par_name;

}

//Define the setScore() function.

void Player::setScore(int par_score)

{

score = par_score;

}

//Define the getName() function.

string Player::getName()

{

return name;

}

//Define the getScore() function.

int Player::getScore()

{

return score;

}

7 0
3 years ago
Other questions:
  • Practicing new things strains your brain fibers, weakening your ability to make connections.
    13·1 answer
  • 2.14 (a) Using series/parallel resistance reductions, find the equivalent resistance between terminals A and B in the circuit of
    14·1 answer
  • Water is the working fluid in an ideal Rankine cycle. Superheatedvapor enters the turbine at 10MPa, 480°C, and the condenser pre
    10·1 answer
  • A cylindrical metal specimen having an original diameter of 12.8 mm and gauge length of 50.80 mm is pulled in tension until frac
    9·1 answer
  • What does an aeronautical engineer design
    15·1 answer
  • 1. Which of the following is the ideal way to apply pressure onto pedals?
    14·2 answers
  • 2. (Problem 4.60 on main book, diameters different) Water flows steadily through a fire hose and nozzle. The hose is 35 mm diame
    8·1 answer
  • Please read and an<br><br> 3. Many Jacks use hydraullc power.<br> A) O True<br> B) O False
    13·1 answer
  • How might a field like philosophy of history help scientists​
    14·1 answer
  • All of these are true about steel EXCEPT that:
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!