Taking ratio of W & w. ≈ 6 . w = 1/6 W. Therefore , Weight of an object on the moon is 1/6 of its weight on the earth.
D ............................
Dispersion im pretty sure
I'll tell you how I look at this, although I may be missing something important.
Position = x(t) = 0.5 sin(pt + p/3)
Speed = position' = x'(t) = 0.5 p cos(pt + p/3)
Acceleration = speed' = position ' ' = x ' '(t) = -0.5 p² sin(pt + p/3)
At (t = 1.0),
x ' '(t) = -0.5 p² sin( 4/3 p )
In order to evaluate this, don't I still have to know what 'p' is ? ?
I don't think it can be evaluated with the information given in the question.
For the front glass of the car to get wet,
.
The given parameters:
- <em>Speed of the car, = Vc</em>
- <em>Speed of the rain, = 10 m/s</em>
The relative velocity of the car with respect to the falling rain is calculated as;

- If the speed of the car equals the speed of the rain, the rain will fall behind the car.
- If the speed of the rain is greater than speed of the car, the rain will fall far in front of the car.
- If the speed of the car is greater than speed of the rain, the rain will fall on the car.
Thus, for the front glass of the car to get wet,
.
Learn more about relative velocity here: brainly.com/question/17228388