Power = energy/time=20/4=5.0
<h2>
Answer: 1000 J</h2>
The Work
done by a Force
refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path.
It should be noted that it is a scalar magnitude, and its unit in the International System of Units is the Joule (like energy). Therefore, 1 Joule is the work done by a force of 1 Newton when moving an object, in the direction of the force, along 1 meter:
Now, when the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:
(1)
When they are not parallel, both directions form an angle, let's call it
. In that case the expression to calculate the Work is:
(2)
For example, in order to push the 200 N box across the floor, you have to apply a force along the distance
to overcome the resistance of the weight of the box (its 200 N).
In this case both <u>(the force and the distance in the path) are parallel</u>, so the work
performed is the product of the force exerted to push the box
by the distance traveled
. as shown in equation (1).
Hence:
>>>>This is the work
Answer:
Plasma
Explanation:
A Coronal Mass Ejection (CME) is an outburst of energy that occurs near the outer part of the sun's atmosphere which causes a production of plasma along with a magnetic field.
The outermost part of the sun's atmosphere is called the Solar Corona Although difficult to see, the corona can be seen during a total solar eclipse.
Plasma from CME are clouds of magnetized electrically charged particles which the solar wind causes to travel at a speed of 1.6 million km/hr.
Answer:
a) fr = 224.3 N
, b) fr = 224.3 N
, c) v = 198.0 m/s
Explanation:
a) For this exercise let's start by calculating the acceleration in the fall
v² = v₀² - 2 a (y-y₀)
When it jumps the initial vertical speed is zero
a = -v² / 2 (y-y₀)
a = -68 2/2 (1000-2000)
a = 2,312 m / s²
Let's use the second net law to enter the average friction force
fr = m a
fr = 97 2,312
fr = 224.3 N
b) let's look for acceleration
v² = v₀² - 2 a y
a = (v² –v₀²) / 2 (y-y₀)
a = (4² - 68²) / 2 (0-1000)
a = 2,304 m / s²
fr = m a
fr = 97 2,304
fr = 223.5 N
c) the speed of the wallet is searched with kinematics
v² = v₀² - 2 g (y-y₀)
v = √ (0-2 9.8 (0-2000))
v = 198.0 m/s