Answer:
Depending on the
value of
, the cell potential would be:
, using data from this particular question; or- approximately
, using data from the CRC handbooks.
Explanation:
In this galvanic cell, the following two reactions are going on:
- The conversion between
and
ions,
, and - The conversion between
and
ions,
.
Note that the standard reduction potential of
ions to
is higher than that of
ions to
. Alternatively, consider the fact that in the metal activity series, copper is more reactive than silver. Either way, the reaction is this cell will be spontaneous (and will generate a positive EMF) only if
ions are reduced while
is oxidized.
Therefore:
- The reduction reaction at the cathode will be:
. The standard cell potential of this reaction (according to this question) is
. According to the 2012 CRC handbook, that value will be approximately
.
- The oxidation at the anode will be:
. According to this question, this reaction in the opposite direction (
) has an electrode potential of
. When that reaction is inverted, the electrode potential will also be inverted. Therefore,
.
The cell potential is the sum of the electrode potentials at the cathode and at the anode:
.
Using data from the 1985 and 2012 CRC Handbook:
.
Answer:
The combination of oxygen with other substances to produce new chemical products is called <u>Oxidation</u>.
Explanation:
Oxidation reactions are defined as,
In terms of Inorganic chemistry:
(i) <u>Removal of Electrons: </u>
Example: Mg → Mg²⁺ + 2 e⁻
(ii) <u>Addition of Oxygen:</u>
Example: 2 Mg + O₂ → 2 MgO
In terms of Organic chemistry:
(i) <u>Addition of Electrons: </u>
Example: Cl₂ + 2 e⁻ → 2 Cl⁻
(ii) <u>Addition of Hydrogen:</u>
Example: H₂CCH₂ + H₂ → H₃CCH₃
Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps
Answer:
The mass of oxygen is 12.10 g.
Explanation:
The decomposition reaction of potassium chlorate is the following:
2KClO₃(s) → 2KCl(s) + 3O₂(g)
We need to find the number of moles of KClO₃:

Where:
m: is the mass = 30.86 g
M: is the molar mass = 122.55 g/mol
Now, we can find the number of moles of O₂ knowing that the ratio between KClO₃ and O₂ is 2:3
Finally, the mass of O₂ is:

Therefore, the mass of oxygen is 12.10 g.
I hope it helps you!