1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maslowich
2 years ago
11

What is NOT a reason that Cape Canaveral was chosen to be one of six locations for

Physics
1 answer:
prohojiy [21]2 years ago
4 0

It being near railroads is not a reason why Cape Canaveral was chosen to

be one of six locations for a NASA space center.

<h3>What is the Cape Canaveral?</h3>

The Cape Canaveral is a site which was chosen as a NASA space center for

the launching of rockets into space. It was chosen as a result of the factors

such as:

  • It being scarcely-populated.
  • It has a  temperate climate.
  • It is situated by the ocean.

The temperate climate is located closer to the equator and has a high

centrifugal force which would aid launching of rockets. It was also chosen

because it was scarcely populated and situated by the ocean to prevent

lesser effect on land in the case of accidents and other factors.

Read more about Cape Canaveral here brainly.com/question/614447

You might be interested in
11 kg is a familiar weight for a bag of flour. You are baking cookies for a Save The Rain Forest fund drive. It takes 500 g of f
arlik [135]

Answer: 22 batches.

Explanation:

Given that 11 kg is a familiar weight for a bag of flour. Also, it is given that It takes 500 g of flour to make one batch of cookies.

How many batches of cookies can you make with one bag of flour

Let's first convert 11 kg into grams (g) by multiplying it by 1000

11 × 1000 = 11000 g

Divide 11000 by 500

11000/500 = 22

Therefore, 22 batches of cookies can be made with one bag of flour.

8 0
3 years ago
A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput
Nikitich [7]
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
8 0
3 years ago
Susan, driving north at 53 mphmph , and Shawn, driving east at 63 mphmph , are approaching an intersection. Part A What is Shawn
mafiozo [28]

Answer:

Shawn's speed relative to Susan's speed = 10 mph

Resultant velocity = 82.32 mph

Explanation:

The given data :-

i) Susan driving in north and speed of Susan is ( v₁ ) = 53 mph.

ii) Shawn driving in east and speed of Shawn is ( v₂ ) = 63 mph.

iii) The speed of both Susan and Shawn is relative to earth.

iv) The angle between Susan in north and Shawn in east is 90°.

We have to find Shawn's speed relative to Susan's speed.

v₂₁ = v₂ - v₁   = 63 - 53 = 10 mph

Resultant velocity,

v = \sqrt{v_{2} ^{2}+ v_{1} ^{2}  }  =\sqrt{63^{2} +53^{2} }

v = 82.32 mph

5 0
3 years ago
The attraction will vary directly with the separation between the charges.
Burka [1]
No it won't. It'll vary inversely as the square of the separation.
4 0
3 years ago
if a torque of 55.0 N/m is required and the largest force that can be exerted by you is 135 N what is th e length of the lever a
Whitepunk [10]

Answer:

r=0.41m

Explanation:

Torque is defined as the cross product between the position vector ( the lever arm vector connecting the origin to the point of force application) and the force vector.

\tau=r\times F

Due to the definition of cross product, the magnitude of the torque is given by:

\tau=rFsin\theta

Where \theta is the angle between the force and lever arm vectors. So, the length of the lever arm (r) is minimun when sin\theta is equal to one, solving for r:

r=\frac{\tau}{F}\\r=\frac{55\frac{N}{m}}{135N}\\r=0.41m

7 0
3 years ago
Other questions:
  • A very massive object A and a less massive object B move toward each other under the influence of gravity. Which force, if eithe
    12·1 answer
  • A ball is thrown straight up from a bridge at a speed of 11.0 m/s. If it takes 5.5 seconds to hit the water below, what is the v
    8·1 answer
  • In binocular rivalry, you see one image in the left eye and an incompatible image in the right eye. what do you perceive?
    12·1 answer
  • Which subatomic particle will you add or remove from an atom to create a new element?
    5·1 answer
  • A security guard walks at a steady pace, traveling 190 m in one trip around the perimeter of a building. It takes him 260 s to m
    7·1 answer
  • NEED THE ANSWER ASAP When an object is not in motion, it can still have a form of energy. What form of energy does an object hav
    13·1 answer
  • What is the mass of a crane that has a weight of 697,005.40N?
    10·1 answer
  • MARKING BRAINLIEST!!! NOOOOOOOOOOOO LINKS OR I WILLLLLLLLL REPORT YOU!
    7·2 answers
  • How many main retrofit strategies help solve the ecological problems with suburbs?
    14·1 answer
  • What is the force needed to accelerate a wagon with a mass of 10 kg at a rate
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!