Answer:
A. Interactions between the ions of sodium chloride (solute-solute interactions).
B. Interactions involving dipole-dipole attractions (solvent-solvent interactions).
C. Interactions formed during hydration (solute-solvent interactions).
D. Interactions involving ion-ion attractions (solute-solute interactions).
E. Interactions associated with an exothermic process during the dissolution of sodium chloride (solute-solvent interactions).
F. Interactions between the water molecules (solvent-solvent interactions).
G. Interactions formed between the sodium ions and the oxygen atoms of water molecules (solute-solvent interactions).
Explanation:
The solution process takes place in three distinct steps:
- Step 1 is the <u>separation of solvent molecules.
</u>
- Step 2 entails the <u>separation of solute molecules.</u>
These steps require energy input to break attractive intermolecular forces; therefore, <u>they are endothermic</u>.
- Step 3 refers to the <u>mixing of solvent and solute molecules.</u> This process can be <u>exothermic or endothermic</u>.
If the solute-solvent attraction is stronger than the solvent-solvent attraction and solute-solute attraction, the solution process is favorable, or exothermic (ΔHsoln < 0). If the solute-solvent interaction is weaker than the solvent-solvent and solute-solute interactions, then the solution process is endothermic (ΔHsoln > 0).
In the dissolution of sodium chloride, this process is exothermic.
Answer:
82.28g
Explanation:
Given parameters:
Number of moles of hydrogen gas = 7.26 moles
Unknown:
Amount of ammonia produced = ?
Solution:
We have to write the balanced equation first.
N₂ + 3H₂ → 2NH₃
Now, we work from the known to the unknown;
3 moles of H₂ will produce 2 moles of NH₃
7.26 mole of H₂ will produce
= 4.84 moles of NH₃
Molar mass of NH₃ = 14 + 3(1) = 17g/mol
Mass of NH₃ = number of moles x molar mass = 4.84 x 17 = 82.28g
Mass of CO₂ = 132 g
<h3>Further explanation
</h3>
A mole is a number of particles(atoms, molecules, ions) in a substance
This refers to the atomic total of the 12 gr C-12 which is equal to 6.02.10²³, so 1 mole = 6.02.10²³ particles
Can be formulated :
N = n x No
N = number of particles
n = mol
No = 6.02.10²³ = Avogadro's number
mole also can be formulated :

moles of CO₂ = 3
mass of CO₂(MW=44.01 g/mol) :

Answer:
The number of electrons in the outermost shell of an atom determines its reactivity. Noble gases have low reactivity because they have full electron shells. Halogens are highly reactive because they readily gain an electron to fill their outermost shell.
Explanation:
I hope this helped!
The answer is iii) decreasing the pressure of the system. When the pressure is decreased, the equilibrium will shift to the right because it has 12 moles of gas which is greater than the number of moles of gas on the left side, which is 6 moles. Equilibrium shifting to the side that exerts greater pressure is favored to offset the decrease in pressure.