Answer:

Explanation:
The impulse theorem states that the product between the force and the time interval of the collision is equal to the change in momentum:

where
F is the force
is the time interval
m is the mass
is the change in velocity
Here we have
m = 84 kg


So we can solve the equation to find the force:

Potential and kinetic energy both decrease with the acorn's falling potential and kinetic energy.
The acorn's potential energy is at its peak when it reaches the top of the tree, yet its kinetic energy is zero (i.e., it is not accelerating).
The height of the ball reduces along with the potential energy as the acorn tumbles down the tree, but the kinetic energy rises (energy due to motion)
The height will be 0 and the kinetic and potential energy will be zero at the ground. This demonstrates that as an item falls, both potential and kinetic energy are lost.
Learn more about Energy here
brainly.com/question/13881533
#SPJ4
Answer:
-0.80985201682
Explanation:
Couldn't you have used Google???
<span>The metric
system is the oldest name for the international system of units. The answer is <u>a.
True. </u>SI unit or the international systems of units are based on seven
basic units; the meter, kilogram, second, ampere, Kelvin, candela and mole. All
of these basic units are divided into multiples by a power of ten. For example
in meters, 1 meter is equal to: 1000 millimeter, 100 centimeter, 10 decimeter,
0.1 decameter, 0.01 hectometer, 0.001 kilometer and so on and so forth.</span>
The position of the centre of gravity of an object affects its stability. The lower the centre of gravity (G) is, the more stable the object. The higher it is the more likely the object is to topple over if it is pushed. Racing cars have really low centres of gravity so that they can corner rapidly without turning over.
Increasing the area of the base will also increase the stability of an object, the bigger the area the more stable the object. Rugby players will stand with their feet well apart if they are standing and expect to be tackled.