Answer:
The speed Clyde will be falling at is 33.72.
Answer:
Explanation:
A scientist collects a core sample from 60 km deep in Earth. Which characteristic will she most likely observe in this sample? C. The sample mainly consists of ...
The period of the orbit would increase as well
Explanation:
We can answer this question by applying Kepler's third law, which states that:
"The square of the orbital period of a planet around the Sun is proportional to the cube of the semi-major axis of its orbit"
Mathematically,

Where
T is the orbital period
a is the semi-major axis of the orbit
In this problem, the question asks what happens if the distance of the Earth from the Sun increases. Increasing this distance means increasing the semi-major axis of the orbit,
: but as we saw from the previous equation, the orbital period of the Earth is proportional to
, therefore as
increases, T increases as well.
Therefore, the period of the orbit would increase.
Learn more about Kepler's third law:
brainly.com/question/11168300
#LearnwithBrainly
Answer:
First, the different indices of refraction must be taken into account (in different media): for example, the refractive index of light in a vacuum is 1 (since vacuum = c). The value of the refractive index of the medium is a measure of its "optical density": Light spreads at maximum speed in a vacuum but slower in others transparent media; therefore in all of them n> 1. Examples of typical values of are those of air (1,0003), water (1.33), glass (1.46 - 1.66) or diamond (2.42).
The refractive index has a maximum value and a minimum value, which we can calculate the minimum value by means of the following explanation:
The limit or minimum angle, α lim, is defined as the angle of refraction from which the refracted ray disappears and all the light is reflected. As in the maximum value of angle of refraction, from which everything is reflected, is βmax = 90º, we can know the limit angle (the minimum angle that we would have to have to know the minimum index of refraction) by Snell's law:
βmax = 90º ⇒ n 1x sin α (lim) = n 2 ⇒ sin α lim = n 2 / n 1
Explanation:
When a light ray strikes the separation surface between two media different, the incident beam is divided into three: the most intense penetrates the second half forming the refracted ray, another is reflected on the surface and the third is breaks down into numerous weak beams emerging from the point of incidence in all directions, forming a set of stray light beams.