Ionic bonds are formed when there is complete transfer of valence electrons between two atoms.
Electronegativity tells the trend of an atom to atract electrons.
You should search for the complete set of rules that indicate whether an ionic or covalent bond happens.
There are two relevant rules to state if whether an ionic bond will happen:
- When the difference of electronegativities between the two atoms is greater than 2.0, then the bond is ionic.
- When the difference is between 1.6 and 2.0, the bond is ionic if one of the elements is a metal.
You need to list the electronegativities of the five elements (there are tables with this information)
Element electronegativity
Cu: 1.9
H: 2.2
Cl 3.16
I: 2.66
S: 2.58
Differences:
Cu / S: 2.58 - 1.9 = 0.68
H / S: 2.58 - 2.2 = 0.38
Cl / S: 3.16 - 2.58 =0.58
I / S: 2.66 - 2.58 = 0.08
Those differences are too low to consider that the bond is ionic.
Then the answer is that none of those atoms forms an ionic bond with sulfur.
Answer:
will form bonds between atoms. for more details are in the pic
Answer:
3 e⁻ transfer has occurred.
Explanation
This is a redox reaction.
- Oxidation (loss of electrons or increase in the oxidation state of entity)
- Reduction (gain of electrons or decrease in the oxidation state of the entity)
- An element undergoes oxidation or reduction in order to achieve a stable configuration. It can be an octet or duplet configuration. An octet configuration is that of outer shell configuration of noble gas.
- [Ne]= (1s²) (2s² 2p⁶)
A combination of both the reactions( Half-reactions) leads to a redox reaction.
Let us look at initial configurations of Al and Cl
[Al]= 1s² 2s² 2p⁶ 3s² 3p¹
[Cl]= 1s² 2s² 2p⁶ 3s² 3p⁵
Hence, Al can lose 3 electrons to achieve octet config.
and, Cl can gain 1e to achieve nearest noble gas config. [Ar]
This reaction can be rewritten, by clearly mentioning the oxidation states of all the entities involved.
Al⁰ + Cl⁰ → (Al⁺³)(Cl⁻)₃
Here, Aluminum is undergoing an oxidation(i.e loss of electrons) from: 0→(+3)
Chlorine undergoes a reduction half reaction (i.e gain of electrons) from: 0→(-1). There are 3 such chlorine atoms, hence 3 e⁻ transfer has occurred.
The correct option is STRONTIUM.
Strontium is a group 2 element, that means it has two electrons in its outermost shell. This element will prefer to lose these two electrons in its outermost shell in order to attain the octet form, therefore, it will form electrovalent bond with non metals which it can donate two electrons to.
Answer: look at the close because that is the answer
Explanation: