Answer:
20 °C
Explanation:
Ideal gas law:
PV = nRT
Rearranging:
P / T = nR / V
Since n, R, and V are constant:
P₁ / T₁ = P₂ / T₂
488.2 kPa / T = 468 kPa / 281.15 K
T = 293.29 K
T = 20.1 °C
Rounded, the temperature was 20 °C.
The voltage exists between the fence and the ground. The cow is grounded. The cow is touching the ground, completing the circuit of electricity. <span>When the cow comes into contact with the fence, it becomes an electric ground which sends an electric current into the cow, through the cow, and into the ground. The pain experienced from the shock is due to the current that flows through the cow.</span>
Answer:
22.5 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 30 m/s
Time (t) = 1.5 s
Final velocity (v) = 0 m/s
Distance (s) =?
The distance to which the car move before stopping from the time the driver applied the brake can be obtained as follow:
s = (u + v)t/2
s = (30 + 0)1.5 / 2
s = (30 × 1.5) / 2
s = 45 / 2
s = 22.5 m
Thus, the car will move to a distance of 22.5 m before stopping from the time the driver applied the brake.
Answer:
6 Minutes 40 Seconds or 400 Seconds
Explanation:
Time to cover a distance of 5m = 1 Second
Time to cover a distance of 2000m = 2000÷5
= 400 Seconds
After converting 400 Seconds into minutes it will become 6 minutes 40 seconds.
Those who found this helpful please give me a Thanks to support me. So, I can explain other questions more clearly. If you don't want to mark me Brainliest don't mark. But, please give me a Thanks.
Answer:
sorry I dont now the answer bro i am so sorry xd ;'(