Answer:
The sport utility vehicle was traveling at V2= 11.5 m/s.
Explanation:
m1= 1090 kg
V1= 30.4 m/s
m2= 2880 kg
V2= ?
m1*V1 = m2*V2
V2= (m1*V1)/m2
V2= 11.5 m/s
Answer: a) 7,00 centimeters
(b) 259. 19 feet
(c) 3110.28 inches
(d) 0.049 miles
Explanation:
(a) We know that 1 meter = 100 centimeters
Therefore,

(b)Since 1 meter = 3.28084 feet
Then, 
(c) Since, 1 feet = 12 inches.

(d) 

469.24m. An airplane flying 60m/s at a height of 300m dropped a sack of flour that stack the ground 469.24m from the point of release.
This is a example of horizontal parabolic projectile motion,and we represents this motion in the coordinate axis, which means that the velocity has components in x axis and y axis.
The equation of components on the x axis.
, where x is the distance and Vox the initial velocity before the drop
The equation of components on the y axis.
, where y is the height, and the velocity in y component before the drop is 0, reducing the equation to 
Clear t from both the equation of components on the x axis and the y axis:
and 
Equating both equations and clearing the distance x:

Substituting the values:

To solve this problem we will apply the concepts of strain, flow stress and average flow stress to find the required data. We will start by calculating the Strain which is the logarithmic relationship between the longitudinal change. Later we will find the flow stress through the strength coefficient, the strain and the strain-hardening exponent. Finally with the found values it will be possible to find the average flow stress,
Now the strain is calculated with the logaritmic relation of the lengths.



With this value we can calculate the flow stress,

Here,
K = Strneght coefficient
n = Strainhardening exponent of brass


Finally the average flow stress will be given under the relation:



I think A but I’m not positively sure