1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
15

A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What multiple of Earth's radius RE g

ives the radial distance (from the Earth's center) the projectile reaches if (a) its initial speed is 0.520 of the escape speed from Earth and (b) its initial kinetic energy is 0.520 of the kinetic energy required to escape Earth
Physics
1 answer:
Anna35 [415]3 years ago
3 0

Answer:

a)r_1=1.36R

b)r_2=2.083R

Explanation:

<u>Given:</u>

a) when the initial velocity of the projectile is 0.520 times the escape velocity from the earth.

Let r be the radial distance from the earth's surface Let M be the mass of the Earth and R be the radius of the Earth

Now using conservation of Energy at earths surface and at distance r we have

\dfrac{-GMm}{R}+\dfrac{m(0.52V_e)^2}{2}=\dfrac{-GMm}{r_1}\\\dfrac{-GMm}{R}+\dfrac{m\times 0.52^2\times \dfrac{2GM}{R}}{2}=\dfrac{-GMm}{r_1}\\r_2=1.36\ R

b) when the Initial kinetic Energy of the projectile is 0.52 times the Kinetic Energy required to escape the Earth

Conservation of Energy we have

\dfrac{-GMm}{R}+0.52\times KE_{escape}=\dfrac{-GMm}{r_2}\\\dfrac{-GMm}{R}+0.52\times\dfrac{m\times \dfrac{2GM}{R}}{2}=\dfrac{-GMm}{r_2}\\r_2=2.083\ R

You might be interested in
A jet makes a landing traveling due east with a speed of 120 m/s .
vesna_86 [32]

Average acceleration over a time interval lasting \Delta t is

a_{\rm ave}=\dfrac{\Delta v}{\Delta t}

where \Delta v is the difference in the jet's final and initial velocities. It's coming to a rest, so

a_{\rm ave}=\dfrac{0-120\frac{\rm m}{\rm s}}{13.5\,\rm s}=-8.9\dfrac{\rm m}{\mathrm s^2}

so the average acceleration has magnitude 8.9 m/s^2 and is pointing West (the direction opposite the jet's movement, which should make sense because the jet is slowing down).

7 0
3 years ago
Marissaâs car accelerates uniformly at a rate of +2.60 m/s². How long does it take for Marissaâs car to accelerate from a speed
DIA [1.3K]

Answer:

The time taken by the car to accelerate from a speed of 24.6 m/s to a speed of 26.8 m/s is 0.84 seconds.

Explanation:

Given that,

Acceleration of the car, a=+2.6\ m/s^2

Initial speed of the car, u = 24.6 m/s

Final speed of the car, v = 26.8 m/s

We need to find the time taken by the car to accelerate from a speed of 24.6 m/s to a speed of 26.8 m/s. The acceleration of an object is given by :

t=\dfrac{v-u}{a}

t=\dfrac{(26.8-24.6)\ m/s}{2.6\ s}

t = 0.84 seconds

So, the time taken by the car to accelerate from a speed of 24.6 m/s to a speed of 26.8 m/s is 0.84 seconds. Hence, this is the required solution.                                    

4 0
3 years ago
A 500kg car is driven forward with a thrust force of 1500N. Air resistance and friction acts against the motion of the car with
Wittaler [7]
2m/s^2, this is because F=ma, meaning a is also equal to F/m. The car applies 1500N in one direction and outside sources apply a total of -500N, meaning the 500kg car is moving forward with a total of 1000N of force. Taking the total 1000N and dividing it by 500kg gives you and acceleration of 2m/s^2. Hope this helps!
8 0
2 years ago
A flatbed truck is carrying a 20.0 kg crate along a level road. the coefficient of static friction between the crate and the bed
Dahasolnce [82]
<span>3.92 m/s^2 Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so 0.4 * 9.8 m/s^2 = 3.92 m/s^2 If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so 20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N Multiply by the coefficient of static friction, giving 196 N * 0.4 = 78.4 N So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass 78.4 N / 20.0 kg = 78.4 kg*m/s^2 / 20.0 kg = 3.92 m/s^2 And you get the same result.</span>
6 0
3 years ago
What did the Federal Highway Act do?
saw5 [17]

Answer:

c.

Explanation:

5 0
3 years ago
Other questions:
  • A ______ is a tiny packet of energy
    6·1 answer
  • The specific heat of aluminum is 0.0215 cal/g°c. if a 4.55 g sample of aluminum absorbs 2.55 cal of energy, by how much will the
    12·1 answer
  • Tech A says that an overdrive gear ratio means the input gear turns faster than the output gear. Tech B says that overdrive rati
    7·1 answer
  • A bag of apples has a weight of 22 newtons. find its approximate mass in kilograms.
    6·1 answer
  • What causes the pressure that allows diamonds to form in the mantle?
    14·1 answer
  • In flight, a rocket is subjected to four forces; weight, thrust, lift, and drag. Forces are vector quantities that have both a m
    6·2 answers
  • Four model rockets are launched in a field. The mass of each rocket and the net force acting on it when it launches are given in
    5·1 answer
  • ¿Qué diferencia una magnitud fundamental de una derivada?
    5·2 answers
  • Which unit of measurement is best to estimate the volume of a juice box
    7·1 answer
  • Q/C S Starting with the definition of work, prove that at every point on an equipotential surface, the surface must be perpendic
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!