The statement that identifies an oxidation-reduction reaction is a reaction in which oxidation numbers change (option C).
<h3>What is a redox reaction?</h3>
A redox or oxidation-reduction reaction is a chemical reaction in which some of the atoms have their oxidation number changed.
In a chemical reaction that involves oxidation and reduction, the oxidation number of the involved ions either decreases or increases.
Therefore, the statement that identifies an oxidation-reduction reaction is a reaction in which oxidation numbers change.
Learn more about redox reaction at: brainly.com/question/13293425
#SPJ1
Answer:
29.42 Litres
Explanation:
The general/ideal gas equation is used to solve this question as follows:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K
According to the information provided in this question;
mass of nitrogen gas (N2) = 25g
Pressure = 0.785 atm
Temperature = 315K
Volume = ?
To calculate the number of moles (n) of N2, we use:
mole = mass/molar mass
Molar mass of N2 = 14(2) = 28g/mol
mole = 25/28
mole = 0.893mol
Using PV = nRT
V = nRT/P
V = (0.893 × 0.0821 × 315) ÷ 0.785
V = 23.09 ÷ 0.785
V = 29.42 Litres
Answer:
Single Displacement reaction
In a displacement reaction, a more reactive element replaces a less reactive element from a compound.
Change in colour takes place with no precipitate forms.
Metals react with the salt solution of another metal.
Examples:
2KI + Cl2 → 2KCl + I2
CuSO4 + Zn → ZnSO4 + Cu
Double displacement reaction
In a double displacement reaction, two atoms or a group of atoms switch places to form new compounds.
Precipitate is formed.
Salt solutions of two different metals react with each other.
Examples:
Na2SO4 + BaCl2 → BaSO4 + 2NaCl
2KBr + BaCl2 → 2KCl + BaBr2
Hope this helps...Please Mark as Brainliest!!
Answer:
it cannot be separated by physical methods
Explanation: