Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system =
'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia = 
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to
.
From
'ω' =
ω
since
is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.
Each stream in a drainage system drains into a certain area. In a drainage basin the water falling in the basin drain will fall into the same stream. A drainage divides drawing basin from other drainage basins
Compare the initial mass to the final mass.
Answer:
49.3 m/s
Explanation:
The momentum is defined as the product of the object velocity and its mass.
So the momentum of the truck is

For the car to have the same momentum, its speed must be

The only correct statement on that list is <em>choice-C</em>: If a positively charged rod is brought close to a positively charged object, the two objects will repel.