Answer:
177.277amu
Explanation:
the total occuring isotopes for Hafnium is =6.
First isotope had an atomic weight of 173.940amu
Second isotope =175.941amu
Third isotope =176.943amu
Fourth isotope=177.944amu
Fifth isotope. =178.946amu
sixth isotope .179.947amu
<em>Avera</em><em>ge</em><em> </em><em>ato</em><em>mic</em><em> </em><em>wei</em><em>ght</em><em> </em><em>of</em><em> </em><em>Haf</em><em>nium</em><em>=</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>the </em><em>atomi</em><em>c</em><em> </em><em>weights</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>iso</em><em>topes</em><em>/</em><em> </em><em>Tota</em><em>l</em><em> </em><em>occu</em><em>ring</em><em> </em><em>isotopes</em>
Thus, 173.940amu+175.941amu+176.943amu+177.944amu+178.946amu+179.947amu.= 1063.661amu
Average atomic weight= 1063.661amu /6 = 177.2768333amu
= 177.277amu to 3 decimal places.
Air on a hot day translates to hot air and air on a cold day translates to cold air. The hot air usually have more energy due to particles being more excited by the heat.
Unicellular organisms, cells perform all the basic actions and functions required for living like nutrition, respiration, reproduction etc.
In multicellular organisms, cells divide their tasks on the basis of "DIVISION OF LABOUR" to specialize in certain functions besides respiration etc. Like conduction in neurons, excitation in muscles, RBC production by bone marrow etc.
Atomic number refers to the proton number of the atom itself. Number of electrons in an atom (an atom that is not reacted with any other molecules / Just the atom alone), is the same as the number of protons, because each electron has 1 negative charge, and each proton 1 positive charge, where they cancel out on each other to become a neutral charge.
So, when atomic number is 6, proton number is also 6, and number of electrons will also be 6 in that atom.
Hope this helps! :)
When you bring two objects of different temperature together, energy will always be transferred from the hotter to the cooler object. The objects will exchange thermal energy, until thermal equilibrium<span> is reached, i.e. until their temperatures are equal. We say that </span>heat<span>flows from the hotter to the cooler object. </span><span>Heat is energy on the move.</span> <span>
</span>Units of heat are units of energy. The SI unit of energy is Joule. Other often encountered units of energy are 1 Cal = 1 kcal = 4186 J, 1 cal = 4.186 J, 1 Btu = 1054 J.
Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.