Answer: it’s very bad behavior and can be dangerous
Explanation:
Answer:
4140 steel contains 0.4% C having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C
Explanation:
we have given 4140 steel contains 0.4% C
we know here that 4140 steel is low steel alloy , and it have low amount of chromium , manganese etc alloying element
and these elements which are present in 4140 steel they increase yield strength and ultimate strength of steel
while in 1045 steel contains 0.45 % c is plain carbon steel
and it do not contain any alloying element
so that 4140 steel contains 0.4% C having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C
Answer:
Hello your question is incomplete attached below is the complete question
Answer : Factor of safety for point A :
i) using MSS
(Fos)MSS = 3.22
ii) using DE
(Fos)DE = 3.27
Factor of safety for point B
i) using MSS
(Fos)MSS = 3.04
ii) using DE
(Fos)DE = 3.604
Explanation:
Factor of safety for point A :
i) using MSS
(Fos)MSS = 3.22
ii) using DE
(Fos)DE = 3.27
Factor of safety for point B
i) using MSS
(Fos)MSS = 3.04
ii) using DE
(Fos)DE = 3.604
Attached below is the detailed solution
Explanation:
are bhai brainly aap english me questions kar ne ko hai
ye kon si bhasha hai ??????
Answer:
You need a 120V to 24V commercial transformer (transformer 1:5), a 100 ohms resistance, a 1.5 K ohms resistance and a diode with a minimum forward current of 20 mA (could be 1N4148)
Step by step design:
- Because you have a 120V AC voltage supply you need an efficient way to reduce that voltage as much as possible before passing to the rectifier, for that I recommend a standard 120V to 24V transformer. 120 Vrms = 85 V and 24 Vrms = 17V = Vin
- Because 17V is not 15V you still need a voltage divider to step down that voltage, for that we use R1 = 100Ω and R2 = 1.3KΩ. You need to remember that more than 1 V is going to be in the diode, so for our calculation we need to consider it. Vf = (V*R2)/(R1+R2), V = Vin - 1 = 17-1 = 16V and Vf = 15, Choosing a fix resistance R1 = 100Ω and solving the equation we find R2 = 1.5KΩ
- Finally to select the diode you need to calculate two times the maximum current and that would be the forward current (If) of your diode. Imax = Vf/R2 = 10mA and If = 2*Imax = 20mA
Our circuit meet the average voltage (Va) specification:
Va = (15)/(pi) = 4.77V considering the diode voltage or 3.77V without considering it