In 16 times
KE= o.5 m times V squared
Translating the first sentence into equation we get, t = k(1/h)
where t is time in seconds, k is the constant and h is the horsepower. Substituting
the values in the equation we have, 12s = k(1/200) we have a k = 2400 seconds –
hp. To get the time at 240 hp we use the equation above and the constant, we
get, t = (2400 seconds-hp)(1/240hp) t = 10seconds.
Answer:
h' = 55.3 m
Explanation:
First, we analyze the horizontal motion of the projectile, to find the time taken by the arrow to reach the orange. Since, air friction is negligible, therefore, the motion shall be uniform:
s = vt
where,
s = horizontal distance between arrow and orange = 60 m
v = initial horizontal speed of the arrow = v₀ Cos θ
θ = launch angle = 30°
v₀ = launch speed = 35 m/s
Therefore,
60 m = (35 m/s)Cos 30° t
t = 60 m/30.31 m/s
t = 1.98 s
Now, we analyze the vertical motion to find the height if arrow at this time. Using second equation of motion:
h = Vi t + (1/2)gt²
where,
Vi = Vertical Component of initial Velocity = v₀ Sin θ = (35 m/s)Sin 30°
Vi = 17.5 m/s
Therefore,
h = (17.5 m/s)(1.98 s) + (1/2)(9.81 m/s²)(1.98 s)²
h = 34.6 m + 19.2 m
h = 53.8 m
since, the arrow initially had a height of y = 1.5 m. Therefore, its final height will be:
h' = h + y
h' = 53.8 m + 1.5 m
<u>h' = 55.3 m</u>
Answer:
Technician b is correct.
Explanation:
Crimping cable allows a firm connection in mechanical terms and allows a low resistance path for the signal or the current flow, solder although it is better in terms of electrical conduction, can be impractical if the cable is subjected to excessive movement.
A crimped cable with excessive movement can also be easily broken at the ends, where it joins the part of the cable that is crimped, for this reason, a cable that is in excessive motion is recomended to be spliced by joining cable with cable
.
In order to decide which metod is better for splicing cables its necessary to evaluate each situation separatly.
Answer:
434.16 Joules
Explanation:
u = Initial velocity
v = Final velocity
m = Mass of person
From work-energy theorem

The runner loses 434.16 Joules of mechanical energy.

He slides 0.94364 m