Answer:
Equilibrium shifts to the right
Explanation:
An exothermic reaction is one in which temperature is released to the environment. Hence, if the reaction vessel housing an exothermic reaction is touched after reaction completion, we will notice that the reaction vessel e.g beaker is hot.
To consider the equilibrium response to temperature changes, we need to consider if the reaction is exothermic or endothermic. In the case of this particular question, it has been established that the reaction is exothermic.
Heat is released to the surroundings as the reactants are at a higher energy level compared to the products. Hence, increasing the temperature will favor the formation of more reactants and as such, the equilibrium position will shift to the left to pave way for the formation of more reactants. Thus , more acetylene and hydrogen would be yielded
Nonmetals have the ability to attract electrons better than metals because they have a higher electron affinity or electronegativity than metals.
<h3>What is electronegativity?</h3>
Electronegativity is the tendency, or a measure of the ability, of an atom or molecule to attract electrons and thus form bonds.
An element in the periodic table with a high electronegativity will automatically have a high electron affinity.
Metals (low electronegativity) are known to lose electrons to non-metals (high electronegativity), hence, nonmetals have the ability to attract electrons better than metals because they have a higher electron affinity or electronegativity than metals.
Learn more about electronegativity at: brainly.com/question/2060520
#SPJ1
Answer: 0, 32 , 273
Explanation:
The freezing point of water in degree Celsius, Fahrenheit and Kelvin are in the following order; 0 , 32 , 273
Answer:
E = 19.89×10⁻¹⁶ J
λ = 1×10⁻¹ nm
Explanation:
Given data:
Frequency of xray = 3×10¹⁸ Hz
Wavelength of xray = ?
Energy of xray = ?
Solution:
speed of wave = wavelength × frequency
speed = 3×10⁸ m/s
3×10⁸ m/s = λ ×3×10¹⁸ s⁻¹
λ = 3×10⁸ m/s / 3×10¹⁸ s⁻¹
λ = 1×10⁻¹⁰m
m to nm:
λ = 1×10⁻¹⁰m×10⁹
λ = 1×10⁻¹ nm
Energy of x-ray:
E = h.f
h = plancks constant = 6.63×10⁻³⁴ Js
by putting values,
E = 6.63×10⁻³⁴ Js ×3×10¹⁸ s⁻
¹
E = 19.89×10⁻¹⁶ J