The state of energy that is forbidden is 2p orbital. The correct option is b).
<h3>
What is the energy state of electrons?</h3>
The energy state of an electron depends upon the presence of the electron on the orbitals. Lower the energy they will be in the lower orbital. When they get higher energy they move to the higher orbital.
By using the Selection Rules for Electron Transitions
1.) ?l = +/- 1 and
2.) ?m = 0, +/- 1
The conservation of angular momentum is required by these laws. A photon's inherent angular momentum is 1. As 4p is higher than 2p and the electron is lowering its energy. So, it will go down to 2p orbital.
Thus, the correct option is b). 2p orbital.
The question is incomplete. Your full question is given below:
a) 3d
b) 2p
c) 1s
d) 2s
To learn more about the energy state of electrons, refer to the link:
brainly.com/question/4138621
#SPJ4
The Ph scale can tell you if a substance is an acid a base or neutral by
a Ph scale runs from a Ph of 1-14. if a substance has a Ph less than 7 (Ph<7) the substance is said to be a an acid
if a substance has a ph greater than 7 (Ph>7) the substance is said to be a base
if a substance has a Ph equal to 7(Ph=7) the substance is said to be neutral
0.448 moles of ions will form when a 42.66-gram sample of magnesium chloride is dissolved in water (option A).
<h3>How to calculate number of moles?</h3>
According to this question, when magnesium chloride (MgCl2) dissolves in water, it dissociates into magnesium ions and chloride ions as follows:
MgCl2(aq) ⟶ Mg2+(aq) + Cl−(aq)
However, if a 42.66-gram sample of magnesium chloride is dissolved in water, this means that 42.66g/molecular mass of MgCl2 will be the number of moles of the ionic products.
molecular mass of MgCl2 = 95.3g/mol
moles = 42.66g ÷ 95.3g/mol = 0.448mol
Therefore, 0.448 moles of ions will form when a 42.66-gram sample of magnesium chloride is dissolved in water.
Learn more about moles at: brainly.com/question/26416088
#SPJ1
It is an Alkene because it has a double bond, so it’ll have “ene” at the end. The simplest Alkene has 2 carbons.
2 carbons = “eth”
Look at that! Two carbons! It must be “ethene”
<span>The
Pair Of Compounds that Are Isomers are CH3COCH3 and CH3CH2CHO. The answer is
number 4. Isomers have the same formula but different structures. In number 4,
both compounds contains three carbon atoms, one oxygen and 6 hydrogen atoms
that makes them isomers.</span>