When the object is at the focal point the angular magnification is 2.94.
Angular magnification:
The ratio of the angle subtended at the eye by the image formed by an optical instrument to that subtended at the eye by the object when not viewed through the instrument.
Here we have to find the angular magnification when the object is at the focal point.
Focal length = 6.00 cm
Formula to calculate angular magnification:
Angular magnification = 25/f
= 25/ 8.5
= 2.94
Therefore the angular magnification of this thin lens is 2.94
To know more about angular magnification refer:: brainly.com/question/28325488
#SPJ4
Answer:
Final speed of the train is 7.5 m/s
Explanation:
It is given that,
Uniform acceleration of the train is, a = 1.5 m/s²
It starts from rest and travels for 5.0 s. We have to find the final velocity of the train. By using first equation of motion as :
Here, train starts from rest so, u = 0
v = 7.5 m/s
So, the final velocity of the train is 7.5 m/s. Hence, this is the required solution.
Answer:
1027 N/C
3.42 x 10⁻⁶ T
Explanation:
I = Intensity of electromagnetic field = 1400 W/m²
E₀ = Maximum value of electric field
Intensity of electromagnetic field is given as
I = (0.5) ε₀ E₀² c
1400 = (0.5) (8.85 x 10⁻¹²) (3 x 10⁸) E₀²
E₀ = 1027 N/C
B₀ = maximum value of magnetic field
using the equation
E₀ = B₀ c
1027 = B₀ (3 x 10⁸)
B₀ = 3.42 x 10⁻⁶ T
Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J
Answer:
Explanation:
To find Sammy's course you have to add the two velocities (vectors), 18 mph 327º and 4 mph 60º.
To add the two vectors analytically you decompose each vector into their vertical and horizontal components.
<u>1. 18 mph 327º</u>
- Horizontal component: 18 mph × cos (327º) = 15.10 mph
- Vertical component: 18 mph × sin (327º) = - 9.80 mph
<u>2. 4 mph 60º</u>
- Horizontal component: 4 mph × cos (60º) = 2.00 mph
- Vertical component: 4 mph × sin (60º) = 3.46 mph
<u>3. Addition:</u>
You add the corresponding components:
To find the magnitude use Pythagorean theorem:
<u>4. Direction:</u>
Use the tangent ratio:
Find the inverse: