Clever problem.
We know that the beat frequency is the DIFFERENCE between the frequencies of the two tuning forks. So if Fork-A is 256 Hz and the beat is 6 Hz, then Fork-B has to be EITHER 250 Hz OR 262 Hz. But which one is it ?
Well, loading Fork-B with wax increases its mass and makes it vibrate SLOWER, and when that happens, the beat drops to 5 Hz. That means that when Fork-B slowed down, its frequency got CLOSER to the frequency of Fork-A ... their DIFFERENCE dropped from 6 Hz to 5 Hz.
If slowing down Fork-B pushed it CLOSER to the frequency of Fork-A, then its natural frequency must be ABOVE Fork-A.
The natural frequency of Fork-B, after it gets cleaned up and returns to its normal condition, is 262 Hz. While it was loaded with wax, it was 261 Hz.
Answer:
191433.4 hours
Explanation:
We are given that In the average US household, the television is on 6.75 hours/day! How many hours will have passed after 77.7 years (the average lifeexpectancy of an American)?
1 year - 365 days
Given that the television is on 6.75 hours/day.
If 1 year = 365 days
Convert 77.7 years to days by multiplying it by 365
77.7 × 365 = 28360.5 days
So the number of hours will be:
28360.5 × 6.75 = 191433.375 hours
Therefore, 191433.4 hours will pass.
Non of the options is correct.
Answer:
A related type of beta decay
Explanation:
It’s because flourecent lights operate at higher temperatures than incadecent lights.