∑F = ma = (90 kg)(1.2 m/s²) = 108 N = 100 N (1 significant digit)
Answer:
θ = 4.78º
with respect to the vertical or 4.78 to the east - north
Explanation:
This is a velocity compound exercise since it is a vector quantity.
The plane takes a direction, the air blows to the west and the result must be to the north, let's use the Pythagorean theorem to find the speed
v_fly² = v_nort² + v_air²
v_nort² = v_fly² + - v_air²
Let's use trigonometry to find the direction of the plane
sin θ = v_air / v_fly
θ = sin⁻¹ (v_air / v_fly)
let's calculate
θ = sin⁻¹ (10/120)
θ = 4.78º
with respect to the vertical or 4.78 to the north-east
Answer:
C. At the bottom of the circle.
Explanation:
Lets take
Radius of the circle = r
Mass = m
Tension = T
Angular speed = ω
The radial acceleration towards = a
a= ω² r
Weight due to gravity = mg
<h3>At the bottom condition</h3>
T - m g = m a
T = m ω² r + m g
<h3>At the top condition</h3>
T + m g = m a
T= m ω² r -m g
From above equation we can say that tension is grater when ball at bottom of the vertical circle.
Therefore the answer is C.
C. At the bottom of the circle.
Answer:
D.
Explanation:
To solve the exercise it is necessary to apply the concepts related to the Magnetic Field described by Faraday.
The magnetic field is given by the equation:

Where,
Permeability constant
d = diameter
I = Current
For the given problem we have a change in the diameter, twice that of the initial experiment, therefore we define that:


The ratio of change between the two is given by:




Therefore the correct answer is D.
Here is your answer:
First find the notations:
2×10^-3
=0002
And...
2.5×10^4=25000
Then divide:
0002÷25000=8E-9
Your answer:
=8 x 10-8