Answer:
- <em>You could expect 3.48 grams of C₂H₄N₂</em>
Explanation:
You must start by stating the chemical equation for the reaction of ammonia, carbon dioxide, and methane to produce aminoaceto nitrile.
1. Word equation:
Ammonia + Carbon dioxide + Methane → Aminoacetonitrile + Water
2. Balanced chemical equation:

3. Convert the mass of each reactant into number of moles:
<u>Formula:</u>
- Number of moles = mass in grams/molar mass
<u>2.11g NH₃</u>
- Number of moles = 2.11g / 17.03g/mol = 0.124 mol NH₃
<u>14.9g CO₂</u>
- Number of moles = 14.9g/44.01g/mol = 0.339 mol CO₂
<u>1.75g CH₄</u>
- Number of moles = 1.75g/16.04g/mol = 0.109 mol CH₄
4. Theoretical mol ratio
From the balanced chemical equation, using the coefficientes:

5. Limiting reagent
The available amounts of the reactants are:
Fom the theoretical mole ration, to react with 0.124 mol of NH₃ you would need:
- 0.124molNH₃ × (5molCO₂/8molNH₃) = 0.0775 mol CO₂
Since there are 0.339 moles available, this is in excess.
- 0.124molNH₃ × (3molCH₄/8molNH₃) = 0.0465mol CO₂
Since there are 0.109 moles available, this is in excess too.
Hence, the limiting reagent is NH₃.
6. Yield
Use the theoretical ratio:
- 0.124molNH₃ × (4molC₂H₄N₂ / 8molNH₃) = 0.0620 mol C₂H₄N₂
Convert to grams:
- Mass = number of moles × molar mass
- 0..0620 mol × 56.068g/mol = 3.48 g of C₂H₄N₂ ← answer
Answer:
d Rubidium
Explanation:
The atomic radius of an atom is the distance from the center of the nucleus to its outermost electron.
The atomic radius of elements varies in the periodic table, it increases as you go down in a group and decreases along the period from left to right.
All the elements listed: Hydrogen, Sodium, Lithium and Rubidium belong to the same group in the periodic table (group 1), Since atomic radius increases from top to bottom in a group, Rubidium has the largest atomic radius.
Answer:
Nucleotides are made up of a five carbon sugar such as ribose or deoxyribose and a group of phosphate with 1-3 phosphates
Answer:
pro
Explanation:
c3h8 is propane
3 carbons makes it PROpane
the ANE come from all single bonds