26 m/s for fifteen seconds. distance = rate times time, so distance = 26 m/s * 15 seconds. this gives you distance = 390 meters.
<span>1.7 rad/s
The key thing here is conservation of angular momentum. The system as a whole will retain the same angular momentum. The initial velocity is 1.7 rad/s. As the person walks closer to the center of the spinning disk, the speed will increase. But I'm not going to bother calculating by how much. Just remember the speed will increase. And then as the person walks back out to the rim to the same distance that the person originally started, the speed will decrease. But during the entire walk, the total angular momentum remained constant. And since the initial mass distribution matches the final mass distribution, the final angular speed will match the initial angular speed.</span>
Potential and kinetic energy both decrease with the acorn's falling potential and kinetic energy.
The acorn's potential energy is at its peak when it reaches the top of the tree, yet its kinetic energy is zero (i.e., it is not accelerating).
The height of the ball reduces along with the potential energy as the acorn tumbles down the tree, but the kinetic energy rises (energy due to motion)
The height will be 0 and the kinetic and potential energy will be zero at the ground. This demonstrates that as an item falls, both potential and kinetic energy are lost.
Learn more about Energy here
brainly.com/question/13881533
#SPJ4
Answer:
An object is called a horizontal projectile if it is launched from a certain height with some initial horizontal velocity only. The initial vertical velocity of such an object is zero. But as the object falls through the atmosphere the horizontal component of velocity remains constant but vertical component increases due to gravitational acceleration.
Explanation:
When the truck accelerates forward the ball will shift to the back of the bed of the truck because of inertia