Answer:

Explanation:
Given:
width of the wire, 
thickness of the flat wire, 
length of the wire, 
voltage across the wire, 
current through the wire, 
Now the net resistance of the wire:
using ohm's law



We have the relation between the resistivity and the resistance as:

where:
a = cross sectional area of the wire
resistivity of the wire material


Answer:
La fuerza magnética del electrón es 6.41x10⁻¹³ N.
Explanation:
Podemos encontrar la fuerza magnética (F) usando la ley de Lorentz:

En donde:
q: es la carga del electrón = 1.602x10⁻¹⁹ C
v: es la velocidad del electrón = 5x10⁶ m/s
B: es el campo magnético = 0.8 T
Por lo tanto, la fuerza magnética del electrón es 6.41x10⁻¹³ N.
Espero que te sea de utilidad!
I think it would be 77.9 grams
Answer:
Option A.
Explanation:
In quantum physics <u>there is a law to relate the position and the momentum of the particle</u>, it says that if we know with precision where is a quantum particle, we can not know the momentum of this particle, in other words, the velocity of the particle. So, when we measure the velocity of the particle we find the correct value of the particle, but we can not determine with accuracy where is the particle. This law is known as the Heisenberg's uncertainty principle and, its expressed as follows:
<em>where Δx: is the position's uncertainty, Δp: is the momentum's uncertainty and h: is the Planck constant.</em>
Therefore, the correct answer is A: measuring the velocity of a tiny particle with an electromagnet has no effect on the velocity of the particle. It only affects the determination of the particle's position.
I hope it helps you!
Is there any numbers to your question?
Keep in mind, the energy is conserved in a pendulum.
Here’s more information:
https://blogs.bu.edu/ggarber/interlace/pendulum/energy-in-a-pendulum/