22.3 is the answer to this question
Explanation:
Formula to calculate hybridization is as follows.
Hybridization =
where,
V = number of valence electrons present in central atom
N = number of monovalent atoms bonded to central atom
C = charge of cation
A = charge of anion
So, hybridization of
is as follows.
Hybridization =
=
= 2
Hybridization of
is sp. Therefore,
is a linear molecule. There will be only two electron groups through which Be is attached.
Similarly, hybridization of
is calculated as follows.
Hybridization =
=
= 5
Therefore, hybridization of
is
is also a linear molecule. Though there are three lone pair of electrons present on a xenon atom and it is further attached with fluorine atoms through two electron pairs. Hence, there are in total five electron groups.
Thus, we can conclude that out of the given options
is the correct examples of linear molecules for five electron groups.
Compare the density of the object in question to the density of water. If its density is less than water, it will float. For example, oak floats because its density is 0.7 g/cm³. If the density of an object is greater than water, it will sink.
The value of "d" is 80°
Explanation:
Cyclic quadrilaterals are the special group of quadrilaterals with all its base lying on the circumference of the circle. In other words, a quadrilateral inscribed in a circle is called a cyclic quadrilateral.
Cyclic quadrilateral are characterised by some special features such as
- Sum of opposite angles of a cyclic quadrilateral is always a supplementary angle.
- If one of the sides of a cyclic quadrilateral is produced, then the exterior angle so formed is always double of the corresponding interior angle.
Using the property 1
We find that since the quadrilateral is cyclic, opposite pairs must be supplementary
100°
+∠D must be equal to 180°
D=180°
-100°
=80°
Answer 19.9g. I’ve took the test last week at my uncle randy’s house