The volume of a fixed mass of a gas is directly proportional to the temperature
I don’t know jsnshanhs shznjs
No, the dilution does not change the number of moles dissolved
Explanation:
We can see that,
The molarity of the solution was 0.50 M
The volume of the solution is 10 ml.
No of moles of the solute was= volume * concentration
= 10 X 10^-3* 0.50
= 5*10^-3 moles
When the solution is diluted from 10 ml to 100ml, the molarity or concentration changes but number of moles remains constant.
The molarity of 100 ml solution will be
c=n/V
= 5*10^-3*/100*10^-3
= 0.05
when the solution is diluted to 100ml from 10 ml molarity changes from 0.5M TO 0.05 M
Answer
The molarity (M) of the H3PO4 solution = 1.0 M
Explanation
Given:
Mass of H3PO4 = 49.0 grams
Volume of the solution = 500 mL = 500/1000 = 0.5 L
What to find:
The molarity (M) of the H3PO4 solution.
Step-by-step solution:
Step 1: Convert 49.0 grams H3PO4 to moles using the mole formula.

The molar mass of H3PO4 = 97.994 g/mol
So,

Step 2: Calculate the molarity of the solution using the molarity formula.

Putting mole = 0.50 mol and volume = 0.50L into the formula, we have;

The molarity (M) of the H3PO4 solution = 1.0 M
<span>5.45 x 10^3 kg of sodium carbonate is needed to neutralize 5.04 kg of sulfuric acid.
For this, I will assume you have pure H2SO4. So first, you need to calculate the molar mass of H2SO4 and Na2CO3. Lookup the atomic weights of all the elements involved.
Atomic weight of Sodium = 22.989769
Atomic weight of Sulfur = 32.065
Atomic weight of Carbon = 12.0107
Atomic weight of Oxygen = 15.999
Atomic weight of Hydrogen = 1.00794
Molar mass of H2SO4 = 2 * 1.00794 + 32.065 + 4 * 15.999 = 98.07688 g/mol
Molar mass of Na2CO3 = 2 * 22.989769 + 12.0107 + 3 * 15.999
= 105.987238 g/mol
The balanced equation for the reaction of Na2CO3 with H2SO4 is
Na2CO3 + H2SO4 => Na2SO4 + CO2 + H2O
so for every mole of sulfuric acid to be neutralized, you need 1 mole of sodium carbonate. You can determine the number of moles of sulfuric acid you have and then calculate the mass of that many moles of sodium carbonate. But, there's an easier way. Just use the relative mass differences between sodium carbonate and sulfuric acid. So
105.987238 g/mol / 98.07688 g/mol = 1.080655
So that means for every kg of sulfuric acid, you need 1.080655 kg of sodium carbonate. Now do the multiplication.
5.04 x 10^3 kg * 1.080655 = 5.4465 x 10^3 kg.
Since you only have 3 significant figures for your data, round the result to 3 significant figures, giving 5.45 x 10^3 kg</span>