The approximate speed of sound in dry (0% humidity) air, in meters per second, at temperatures near 0 °C, can be calculated from
Here
Temperature in Celsius
Replacing with our values we have that
Therefore the speed of sound in air at that temperature is 366.1m/s
Answer:
P = 33.6 [N]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F = m*a
where:
F = forces [N]
m = mass = 14 [kg]
a = acceleration = 6 [m/s²]
In the second part of this problem we must find the work done, where the work in physics is known as the product of force by distance, it is important to make it clear that force must be applied in the direction of movement.
where:
W = work [J]
F = force = 84 [N]
d = displaciment = 40 [m]
Finally, the power can be calculated by the relationship between the work performed in a given time interval.
where:
P = power [W]
W = work = 3360 [J]
t = time = 100 [s]
Now replacing:
The power is given in watts
Answer: 272.82 drop/tile
Explanation:
Given that the Rain drops fall on a tile surface at a density of 4638 drops/ft2. There are 17 tiles/ft2. How many drops fall on each tile?
Tiles/ft^2 × drop/tiles = drop/ft^2
Tiles will cancel out. Leaving the answer to be drop/ ft^2
Substitutes all the magnitude of the above units.
17 × drop/tiles = 4638
Make drop/tiles the subject of formula
Drop/tiles = 4638/17
Drop/tiles = 272.82
Therefore, 272.82 drop/tile drops fall on each tile?
D.
Always use the right tool to get accurate measurements
Infrared is created by detecting the produced radiation coming off of clouds. The temperature of the cloud will define the wavelength of radiation produced from the cloud. The benefit of the infrared imagery is that can be used day and night to conclude the temperature of the cloud tops and earth surface structures and to get the general idea of how clouds are. Based on the general guidelines to define cloud features, if the cloud is bright white on infrared then it is a high cloud or has a cloud top that is developed high into the troposphere. In this way infrared images actually display patterns of temperature on a gray scale such that at one extreme dark gray is warm and at the other extreme bright white is cold. A color scale is used to portray temperature and some improved infrared images show two or more gray scale sequences. High cold clouds are brighter white than low warm clouds.