Answer:
Soru okunmuyor keşke fotoğrafını çekip atsaydın öyle atarsan sorunu çözerim
İYİ DERSLER
To answer this question, we should know the formula for the terminal velocity. The formula is written below:
v = √(2mg/ρAC)
where
m is the mass
g is 9.81 m/s²
ρ is density
A is area
C is the drag coefficient
Let's determine the mass, m, to be density*volume.
Volume = s³ = (1 cm*1 m/100 cm)³ = 10⁻⁶ m³
m = (1.6×10³ kg/m³)(10⁻⁶ m³) = 1.6×10⁻³ kg
A = (1 cm * 1 m/100 cm)² = 10⁻⁴ m²
v = √(2*1.6×10⁻³ kg*9.81 m/s²/1.6×10³ kg/m³*10⁻⁴ m²*0.8)
<em>v = 0.495 m/s</em>
Answer:
Explanation:
Givens
vi = 10 m/s
a = 1.5 m/s^2
d = 600 m
vf = ?
Formula
vf^2 = vi^2 + 2*a*d
Solution
vf^2 = 10^2 + 2*1.5 * 600
vf^2 = 100 + 1800
vf^2 = 1900
sqrt(vf^2) = sqrt(1900)
vf = 43.59 m/s
Answer:
PLEASE MARK AS BRAINLIEST!!
Explanation:
ANSWER IS IN THE IMG BELOW
Answer:
857.5 m
2.8583×10⁻⁶ seconds
Explanation:
Time taken by the sound of the thunder to reach the student = 2.5 s
Speed of sound in air is 343 m/s
Speed of light is 3×10⁸ m/s
Distance travelled by the sound = Time taken by the sound × Speed of sound in air
⇒Distance travelled by the sound = 2.5×343 = 857.5 m
⇒Distance travelled by the sound = 857.5 m
Time taken by light = Distance the light travelled / Speed of light

Time taken by light = 2.8583×10⁻⁶ seconds