Answer : The value of equilibrium constant (K) is, 424.3
Explanation : Given,
Concentration of
at equilibrium = 0.067 mol
Concentration of
at equilibrium = 0.021 mol
Concentration of
at equilibrium = 0.040 mol
The given chemical reaction is:

The expression for equilibrium constant is:
![K_c=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
Now put all the given values in this expression, we get:


Thus, the value of equilibrium constant (K) is, 424.3
There are 2 possible answers here : b and d.
The Ideal Gas Equation is : <u>PV = nRT</u>
<u />
Here, when pressure is increased and temperature is lowered, the volume of the molecules will substantially decrease, which means it has deviated from ideal behavior.
The moving of molecules from areas of high concentration to that of low concentration to gain energy is best described as passive transport
<h3>What is passive transport?</h3>
Passive transport is a type of membrane transport in which chemicals are moved across cell membranes without using energy. Unlike active transport, which uses cellular energy, passive transport uses the second law of thermodynamics to cause the movement of substances across cell membranes.
<h3>Why is passive transport important?</h3>
Passive transport processes are critical to homeostasis. They maintain proper conditions inside the cell and the organism as a whole by letting chemicals to pass into and out of the cell.
To know more about Passive transport visit:
brainly.com/question/13542102
#SPJ4
O is what should go in the blank. O stands for Oxygen.