1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reptile [31]
3 years ago
13

Choose the true statements.

Mathematics
1 answer:
stiks02 [169]3 years ago
7 0

Answer:

The y-intercept must be zero.

It is possible that the line is horizontal.

Step-by-step explanation:

The description states that the line "crosses both axes at the origin."  That would mean that the point (0,0) is on the graph.  The y-intercept is the value of y when x=0.  We see that it is zero in this case (0,0).  

The description says nothing about the slope.  So it could be either positive or negative.  But it could also mean that the slope is zero.  A zero slope would be a horizontal line.  So that is a second statement that is true:  "It is possible that the line on the graph is horizontal."

You might be interested in
Giving deserved thank yous, ratings, and brainliest. The topic is dot plots
DanielleElmas [232]

Answer: 18

Step-by-step explanation:

5 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Which is the graph of f(x) = 4[1/2]x ?
bagirrra123 [75]

Step-by-step explanation:

answer is in picture see

hope it helpful

6 0
3 years ago
How many lines intersect at point O?<br><br><br> 4<br><br><br> 2<br><br><br> 1<br><br><br> 3
elena-s [515]
2 lines intersect at point O
3 0
3 years ago
Read 2 more answers
The temperature at a mountain base camp was −3 degrees Celsius on Monday. Tuesday morning, the temperature was 2 degrees Celsius
guapka [62]

Answer: -9 degrees Celsius

Step-by-step explanation: You subtract two degrees from -3 and get -5 (-3-2=-5). Then, you subtract 4 degrees from -5 and get the answer of -9 degrees Celsius.

6 0
3 years ago
Read 2 more answers
Other questions:
  • Solve for x: (5 points) (-6/5)x -4 = -46<br><br> a. 23 <br> b. 35 <br> c. −23 <br> d. −35
    8·1 answer
  • Kathy runs a 26.2- mile marathon at an average pace of 6.2 minutes per mile how long will it take her to finish
    8·2 answers
  • Name some advantages and disadvantages of the graphing method and the algebraic method when determining solutions for linear fun
    8·1 answer
  • Activating prior knowledge what is a factor
    13·1 answer
  • The area of the base of a rectangular prism is 36 cm2. The height of the prism is 3 5 6 cm. What is the volume of the prism?
    14·1 answer
  • Guy went fishing and caught 36 fish in 9 hours. Shawn went fishing for 12 hours and caught 48 fish.
    15·1 answer
  • 3 % of 8.85 is what?
    11·2 answers
  • Mr. Green paid $7.50 for a set of dry erase markers. He used a $2.00 coupon for his purchase. Write AND solve an equation that r
    13·1 answer
  • Please answer this. (its easy)
    6·2 answers
  • Please help me! Determine the area
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!