-- If the system is 'closed', then nothing ... including energy ... can get in or out, and the total energy inside has to be constant.
If half of the energy in the system starts out as potential energy and the rest starts out as kinetic, and then the potential energy increases, there's only one place the increase could have come from ... it could only have been converted from kinetic energy. So the <em>kinetic energy</em> in the system <em>must</em> <em>decrease</em>.
In fact, this isn't even a "result". The kinetic energy has to decrease <em><u>before</u></em> the potential energy can increase, because that's where the increase has to come from.
If the system is 'open', then energy can come in and go out. If the potential energy inside suddenly increases, we don't know where it came from, so we can't say anything about what happens to the system.
Answer:
A)
B)
C)
Explanation:
Given that:
- no. of turns i the coil,

- area of the coil,

- time interval of rotation,

- intensity of magnetic field,

(A)
Initially the coil area is perpendicular to the magnetic field.
So, magnetic flux is given as:
..................................(1)
is the angle between the area vector and the magnetic field lines. Area vector is always perpendicular to the area given. In this case area vector is parallel to the magnetic field.


(B)
In this case the plane area is parallel to the magnetic field i.e. the area vector is perpendicular to the magnetic field.
∴ 
From eq. (1)


(C)
According to the Faraday's Law we have:



The modern name, Mount St. Helen's, was given to the volcanic peak in 1792 by seafarer and explorer Captain George Vancouver of the British Royal Navy. He named it in honor of fellow countryman Alleyne Fitzherbert, who held the title 'Baron St. Helen's.