Answer: 5 km/hr
Explanation:
speed= distance divided by time
20/4
= 5 km/hr
La respuesta es la letra b
Answer:
The average power dissipated is 72 W.
Explanation:
Given;
peak voltage of the AC circuit, V₀ = 120 V
resistance of the resistor, R = 100 -ohm
The average power dissipated by the resistor is given by;

where;
is the root-mean-square-voltage

The average power dissipated by the resistor is calculated as;

Therefore, the average power dissipated is 72 W.
The partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm
<u>Explanation:</u>
H₂ + Br₂ ⇒ 2HBr
PH₂ = 0.782atm
PBr₂ = 0.493atm
Kp = (PHBr)²/ (PH₂) (PBr₂) = 1.4 X 10⁻²¹
At equilibrium:
Let 2x = pressure of HBr
PH₂ = 0.782 -x
PBr₂ = 0.493 - x
Kp = (2x)^2 / (0.782-x)(0.493-x)
Now, because Kp is very small, x will be very small compared to 0.782 and 0.493.
Then,
Kp = 1.4X10⁻²¹ = (4x²) / (0.782)(0.493)
x = 1.2X10⁻¹¹
PHBr = 2x = 2.4 X 10⁻¹¹ atm
Therefore, the partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm
Answer:
Check Explanation.
The two statements given aren't true.
Explanation:
Although the question seems incomplete, I will address the concept of energy transfer during a wave's propagation.
The particles involved in wave's propagation move back and forth perpendicularly to the way the wave is moving, but do not move (at least, no significant movement is noticeable) in the direction of the wave. The particles ‘participate’ in the wave propagation by bumping into one another and transferring energy. This is exactly why energy can be transferred, although the average position of the particles doesn’t change.
So, the particles of the medium do not absorb energy from the atmosphere and do not significantly move from one location to another.
Hope this Helps!!!