1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ludmilka [50]
2 years ago
15

How to find acceleration with mass and force calculator

Physics
1 answer:
ollegr [7]2 years ago
4 0
Force = Mass X Acceleration
Mass= Force divided Acceleration Acceleration = Force divided mass

You might be interested in
An 80-kg football player travels to the right at 8 m/s and a 120-kg player on the opposite team travels to the left at 4.0 m/s.
77julia77 [94]

Answer:

See Explanation

Explanation:

m1(v1) + m2(v2)

Opposite turns the plus to subtraction.

80(8) - 120(4.0)

60 - 480 = 160 kg m/s to the right

7 0
2 years ago
I really need help for this question
yan [13]
A will be the fastest and c the slowest because of the dip it has a is a straight line fastest way to get from a to b is a straight line b is the second fastest and d is last
5 0
3 years ago
NEED HELP ASAP!!!!
podryga [215]
The answer is B
I rhink
6 0
2 years ago
I need someone that has a course hero subscription to help me I need all the pages
SVETLANKA909090 [29]

Answer:

So what's the answer???

Explanation:

8 0
3 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
Other questions:
  • A vertical steel beam in a building supports a load of 6.0×10⁴. If the length of the beam is 4.0m and it's cross-sectional area
    11·1 answer
  • The speed of light in vacuum is exactly 299,792,458 m/s. A beam of light has a wavelength of 651 nm in vacuum. This light propag
    8·1 answer
  • How can you tell if a diamond real or fake
    5·2 answers
  • The lowest note possible on the piano is ____ hz, and the highest note possible is 4200 hz.
    10·2 answers
  • PLS ANSWER REALLY EASY! WILL MARK BRAINLIEST.
    10·1 answer
  • Which object has the least amount of kinetic energy? a car driving down a road a soccer ball rolling down a hill a bicycle locke
    6·2 answers
  • ________is what causes acceleration. Two forces acting opposite each other.
    13·1 answer
  • I WILL REPORT YOU IF YOU ANSWER WITH LINK!!! WILL GIVE BRAINLIEST
    11·1 answer
  • A bird is standing on an electric transmission line carrying 3000 A of current. A wire like this has about 3.0 x 10-5 22 of resi
    10·1 answer
  • When is the particle in figure (a) speeding up? (enter your answer using interval notation.)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!