Answer:
It releases some of the energy into the atmosphere as hot steam.
Explanation:
It is given that by using track and cart we can record the time and the distance travelled and also the speed of the cart can be recorded. With all this data we can solve questions on the laws of motion.
Like using the first law of motion we can determine the force of gravity acting on the cart that has moved a certain distance and the velocity or the speed of card has already been registered and since time is known putting the values in formula would help us calculate the gravitational pull acting on cart.
Answer:
a) 0.1832 A
b) 11.91 Volts
c) 2.18 Watt , 0.0168 Watt
Explanation:
(a)
R = external resistor connected to the terminals of the battery = 65 Ω
E = Emf of the battery = 12.0 Volts
r = internal resistance of the battery = 0.5 Ω
i = current flowing in the circuit
Using ohm's law
E = i (R + r)
12 = i (65 + 0.5)
i = 0.1832 A
(b)
Terminal voltage is given as
= i R
= (0.1832) (65)
= 11.91 Volts
(c)
Power dissipated in the resister R is given as
= i²R
= (0.1832)²(65)
= 2.18 Watt
Power dissipated in the internal resistance is given as
= i²r
= (0.1832)²(0.5)
= 0.0168 Watt
Answer:
El mango llega al suelo a una velocidad de 329.982 metros por segundo.
Explanation:
El mango experimenta un movimiento de caída libre, es decir, un movimiento uniformemente acelerado debido a la gravedad terrestre, despreciando los efectos de la viscosidad del aire y la rotación planetaria. Entonces, la velocidad final del mango, es decir, la velocidad con la que llega al suelo, se puede determinar mediante la siguiente fórmula cinemática:
(1)
Donde:
- Velocidad inicial, en metros por segundo.
- Velocidad final, en metros por segundo.
- Aceleración gravitacional, en metros por segundo al cuadrado.
- Tiempo, en segundos.
Si sabemos que
,
y
, entonces la velocidad final del mango es:



El mango llega al suelo a una velocidad de 329.982 metros por segundo.
Explanation:
The given data is as follows.

Voltage = 2.50 V
Hence, calculate the equivalence capacitor as follows.


= 
C = 
Now, we will calculate the charge across each capacitance as follows.
Q = CV
= 
=
=
Thus, we can conclude that
is the charge stored on each given capacitor.