1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
3 years ago
11

Pls helppppppp I don’t understand this at all

Physics
1 answer:
Georgia [21]3 years ago
3 0

Momentum is mass times velocity of the object

p = m • v

p = (7700 kg)(14 m/s)

p = 107809 kg m/s

You might be interested in
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth’s center. Satellite A is to o
Vera_Pavlovna [14]

Answer:

Explanation:

Orbital radius of satellite A , Ra = 6370 + 6370 = 12740 km

Orbital radius of satellite B , Rb = 6370 + 19110 = 25480 km

Orbital potential energy of a satellite = - GMm / r where G is gravitational constant , M is mass of the earth and m is mass of the satellite

Orbital potential energy of a satellite A = - GMm / Ra

Orbital potential energy of a satellite B = - GMm / Rb

PE of satellite B /PE of satellite A

=  Ra / Rb

= 12740 / 25480

= 1 / 2

b ) Kinetic energy of a satellite is half the potential energy with positive value , so ratio of their kinetic energy will also be same

KE of satellite B /KE of satellite A

= 1 / 2

c ) Total energy will be as follows

Total energy = - PE + KE

- P E + PE/2

= - PE /2

Total energy of satellite B / Total energy of A

= 1 / 2

Satellite B will have greater total energy because its negative value is less.

5 0
3 years ago
A 32.5 g cube of aluminum initially at 45.8 °C is submerged into 105.3 g of water at 15.4 °C. What is the final temperature of b
lakkis [162]

Answer:

T = 17.26 ^oC

Explanation:

At thermal equilibrium we have heat given by aluminium must be equal to the heat absorbed by the water

so we will have

Q_1 = Q_2

m_1s_1\Delta T_1 = m_2s_2\Delta T_2

so we will have

32.5(900)(45.8 - T) = 105.3(4186)(T - 15.4)

so we have

(45.8 - T) = 15.1(T - 15.4)

so we have

16.1 T = 277.87

T = 17.26 ^oC

6 0
3 years ago
A brass alloy is known to have a yield strength of 240 MPa (35,000 psi), a tensile strength of 310 MPa (45,000 psi), and an elas
Karo-lina-s [1.5K]

Answer:

Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.

Explanation:

Given that

Yield strength ,Sy= 240 MPa

Tensile strength = 310 MPa

Elastic modulus ,E= 110 GPa

L=380 mm

ΔL = 1.9 mm

Lets find strain:

Case 1 :

Strain due to elongation (testing)

ε = ΔL/L

ε = 1.9/380

ε = 0.005

Case 2 :

Strain due to yielding

\varepsilon' =\dfrac{S_y}{E}

\varepsilon' =\dfrac{240}{110\times 1000}

ε '=0.0021

Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.

For computation of load strain due to testing should be less than the strain due to yielding.

4 0
3 years ago
A long string is wrapped around a 6.6-cm-diameter cylinder, initially at rest, that is free to rotate on an axle. The string is
lys-0071 [83]

Answer:

\omega_f=571.42\ rpm

Explanation:

It is given that,

Diameter of cylinder, d = 6.6 cm

Radius of cylinder, r = 3.3 cm = 0.033 m

Acceleration of the string, a=1.5\ m/s^2

Displacement, d = 1.3 m

The angular acceleration is given by :

\alpha =\dfrac{a}{r}

\alpha =\dfrac{1.5}{0.033}

\alpha =45.46\ rad/s^2

The angular displacement is given by :

\theta=\dfrac{d}{r}

\theta=\dfrac{1.3}{0.033}

\theta=39.39\ rad

Using the third equation of rotational kinematics as :

\omega_f^2-\omega_i^2=2\alpha \theta

Here, \omega_i=0

\omega_f=\sqrt{2\alpha \theta}

\omega_f=\sqrt{2\times 45.46\times 39.39}

\omega_f=59.84\ rad/s

Since, 1 rad/s = 9.54 rpm

So,

\omega_f=571.42\ rpm

So, the angular speed of the cylinder is 571.42 rpm. Hence, this is the required solution.

5 0
4 years ago
A simple model for a person running the 100 m dash is to assume the sprinter runs with constant acceleration until reaching top
Trava [24]

Answer:

He will complete the race in total time of T = 10 s

Explanation:

Total distance moved by the sprinter in 2.14 s is given as

s = \frac{(v_{in} + v_{f})}{2} time

s = \frac{(0 + 11.2)}{2} (2.14)

s = 11.98 m

now the distance remaining to move

d = 100 - 11.98 = 88 m

now he will move with uniform maximum speed for the remaining distance

so we will have

time = \frac{d}{v}

time = \frac{88}{11.2} = 7.86 s

so the total time to complete the race is given as

T = 7.86 + 2.14 = 10 s

6 0
3 years ago
Other questions:
  • Which of the following is probably not a reason why society might initially reject a new scientific theory
    14·1 answer
  • What r semiconductors?
    8·1 answer
  • Help! pls, look at the attachment
    13·1 answer
  • If a car is traveling 60 mph, its tires may have an rpm of 840. How many revolutions do the car’s tires make in one second?
    6·1 answer
  • The safe load for a certain horizontal beam used to hold up part of a building varies inversely as the length between the suppor
    12·1 answer
  • How are force and motion related
    9·1 answer
  • Help me !!!!!!!!!!!!!!!!!!!!!!!!!!
    7·2 answers
  • A ball rolls on a carpet. The ball experiences friction as it rolls. How will friction affect
    7·1 answer
  • A 1000-kg sports car of mass accelerates from rest to 20 m/s in 6.6 s. What is the frictional force exerted by the road on the c
    12·1 answer
  • An object is thrown upward with initial velocity of 30m/s at angle of 30 degree to the horizontal. calculate the components of t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!