The greatest height the ball will attain is 3.27 m
<h3>Data obtained from the question</h3>
- Initial velocity (u) = 8 m/s
- Final velocity (v) = 0 m/s (at maximum height)
- Acceleration due to gravity (g) = 9.8 m/s²
The maximum height to which the ball can attain can be obtained as follow:
v² = u² – 2gh (since the ball is going against gravity)
0² = 8² – (2 × 9.8 × h)
0 = 64 – 19.6h
Collect like terms
0 – 64 = –19.6h
–64 = –19.6h
Divide both side by –19.6
h = –64 / –19.6h
h = 3.27 m
Thus, the greatest height the ball can attain is 3.27 m
Learn more about motion under gravity:
brainly.com/question/13914606
That's wave 'diffraction'.
5 km northeast. Left and up would make northeast
Answer:
Spring's displacement, x = -0.04 meters.
Explanation:
Let the spring's displacement be x.
Given the following data;
Mass of each shrew, m = 2.0 g to kilograms = 2/1000 = 0.002 kg
Number of shrews, n = 49
Spring constant, k = 24 N/m
We know that acceleration due to gravity, g is equal to 9.8 m/s².
To find the spring's displacement;
At equilibrium position:
Fnet = Felastic + Fg = 0
But, Felastic = -kx
Total mass, Mt = nm
Fg = -Mt = -nmg
-kx -nmg = 0
Rearranging, we have;
kx = -nmg
Making x the subject of formula, we have;

Substituting into the formula, we have;


x = -0.04 m
Therefore, the spring's displacement is -0.04 meters.