Answer:
1.52 nm
Explanation:
Using the De Broglie wavelength equation,
λ = h/p where λ = wavelength associated with electron, h = Planck's constant = 6.63 × 10⁻³⁴ Js and p = momentum of electron = mv where m = mass of electron = 9.1 × 10⁻³¹ kg and v = velocity of electron = 4.8 × 10⁵ m/s
So, λ = h/p
λ = h/mv
substituting the values of the variables into the equation, we have
λ = h/mv
λ = 6.63 × 10⁻³⁴ Js/(9.1 × 10⁻³¹ kg × 4.8 × 10⁵ m/s)
λ = 6.63 × 10⁻³⁴ Js/(43.68 × 10⁻²⁶ kgm/s)
λ = 0.1518 × 10⁻⁸ m
λ = 1.518 × 10⁻⁹ m
λ = 1.518 nm
λ ≅ 1.52 nm
Answer:
Nitrogen and oxygen are by far the most common; dry air is composed of about 78% nitrogen (N2) and about 21% oxygen (O2). Argon, carbon dioxide (CO2), and many other gases are also present in much lower amounts; each makes up less than 1% of the atmosphere's mixture of gases.
<h2>Answer: Light waves have a redshift due to the Doppler effect
</h2>
The astronomer Edwin Powell Hubble observed several celestial bodies, and when obtaining the spectra of distant galaxies he observed the spectral lines were displaced towards the red (red shift), whereas the nearby galaxies showed a spectrum displaced to the blue.
From there, Hubble deduced that the farther the galaxy is, the more redshifted it is in its spectrum. <u>The same happens with the stars and this phenomenom is known as the Doppler effect.
</u>
This phenomenon refers to the change in a wave perceived frequency (or wavelength=color) when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other. For example, as a star moves away from the Earth, its espectrum turns towards the red.
Answer:
Notice how all the cells seem to stack on each other, with no spaces in ... and pancreas, which work together to carry out a certain function (in this case, ... Structures found in plant cells but not animal cells include a large central vacuole, cell wall, ... It consists mainly of cellulose and may also contain lignin , which makes it ...
Explanation: