Answer:
D
Explanation:
Ball A is a non positively charged non metal while ball B is metal ball.
Given: The ball B positive charge of small magnitude
To prove: Balls will attract each other
IN this condition because of induction negative charges on the sphere B move to the side closer to sphere A,(induction charging) while the positive charges move to the side further away from sphere A. The polarization of charge on B will cause a greater attractive force than the repulsion of the like charges.
Hence the correct answer will be D .
Answer:
The SI units for energy is Joules.
Answer:
α = 13.7 rad / s²
Explanation:
Let's use Newton's second law for rotational motion
∑ τ = I α
we will assume that the counterclockwise turns are positive
F₁ 0 + F₂ R₂ - F₃ R₃ = I α
give us the cylinder moment of inertia
I = ½ M R₂²
α = (F₂ R₂ - F₃ R₃) 
let's calculate
α = (24 0.22 - 13 0.10)
2/12 0.22²
α = 13.7 rad / s²
Answer:

Explanation:
The three resistors are connected in parallel: this means that the potential difference across each resistor is the same as the voltage of the battery. This can be calculated using the information about the
resistor: in fact, since we know its resistance and the current flowing through it (0.155 A), we can find the potential difference across this resistor, which is equal to the voltage of the battery:

We also know the total current in the circuit, 0.250 A. This means that we can find the total resistance of the circuit, using Ohm's law:

So now we now the total resistance and the resistance of two of the 3 resistors; therefore, we can find the resistance of the 3rd resistor:

Answer:
The focal length is 16.86 cm and the distance of the man if he wants to form an upright image of his chin that is twice the chin's actual size is 8.43 cm.
Explanation:
Given that,
Object distance u=1.54 m =154 cm
Image distance v = 15.2 cm
Magnification = 2
We need to calculate the focal length
Using formula of mirror

Put the value into the formula



We need to calculate the focal length
Using formula of magnification

Put the value into the formula


Using formula of for focal length






Hence, The focal length is 16.86 cm and the distance of the man if he wants to form an upright image of his chin that is twice the chin's actual size is 8.43 cm.