Answer:
When you have to do an English-Metric (SI) length conversion, and you already know the English units of length (miles, yards, feet, inches, etc.), all you need to remember is one simple relationship, and you can readily convert any length in the SI system, to the equivalent length in the other.
1 foot (ft) = 0.3048 meters (m)
BIn this case you need your answer in inches. You (hopefully) know there are 12 inches in a foot, so you just do the following:
1 inch (in) = 1/12 ft = 0.3048/12 m = 0.0254 m
Answer:
1.85 J/K
Explanation:
The computation of total change in entropy is shown below:-
Change in Entropy = Sum Q ÷ T
= 

= -3.12 + 4.97
= 1.85 J/K
Therefore for computing the total change in entropy we simply applied the above formula.
As we can see that there is heat entering the reservoir so it will be negative while cold reservoir will be positive else the process would be impossible.
As the speed of airplane is change due to jet stream
So the net speed is given as

now we can rearrange it as

now by the formula of vector difference we have

now plug in all values
![v_{plane} = \sqrt{365^2 + 136.73^2 - 2* 365* 136.73*cos22}[tex]v_{plane} = 243.7 km/hr](https://tex.z-dn.net/?f=v_%7Bplane%7D%20%3D%20%5Csqrt%7B365%5E2%20%2B%20136.73%5E2%20-%202%2A%20365%2A%20136.73%2Acos22%7D%3C%2Fp%3E%3Cp%3E%5Btex%5Dv_%7Bplane%7D%20%3D%20243.7%20km%2Fhr)
so above is the speed of the plane
this is the sample Answer: Spring tides occur when the moon is full or new. Earth, the moon, and the Sun are in a line. The moon’s gravity and the Sun’s gravity pull Earth’s crust and ocean water. This causes tides to be higher than normal.
At neap tide, the moon and the Sun are at right angles to each other. This happens during the first and third quarters of the lunar cycle. At neap tide, the Sun’s gravity and the moon’s gravity are balanced. High tides are lower; low tides are higher.
Explanation:
just did the assament
Answer: option D. the ratio of the population of male deer is not constant.
Explanation:
The bar graph permits to compare the results for two different populations: male and female deer in a very easy visual way.
These features are remarkable:
- The polulation of male deer (blue bars) decrease from 1961 to 1971, then increase in the next 10 year, decrease in the next decade, and increase for the next two decades. So, its trend is erratic, with ups and downs.
This discards the option A, which states that the population of male deer increases each decade from 1961 to 2011.
- The population of female deer (purple or brown bars) decreases every decade.
This discards the option B. which states that when the polulation of male deer increases, the poluplation of female deer also increases.
- The populations never are equal, hence this discards the option C.
- Since, one popultion increases and decreases, while the other population only decreases, you conclude that the ratio of the population of male deer to female deer is not constant, which is the option D.