Answer:
Due to touch of teflon, its charge will reduce but will not go to zero. Some amount of its initial charge will be transferred to Aluminum rod. So, aluminum rod will have a non-zero negative charge.
Explanation:
Answer:
i) SF:
ii) BM : 
Explanation:
Let's take,
Making y the subject of formula, we have :

For shear force (SF), we have:
This is the area of the diagram.

The shear force equation =
For bending moment (BM):


The bending moment equation =

Answer:
Absolute pressure=70.72 KPa
Explanation:
Given that Vacuum gauge pressure= 30 KPa
Barometer reading =755 mm Hg
We know that barometer always reads atmospheric pressure at given situation.So atmospheric pressure is equal to 755 mm Hg.
We know that P= ρ g h
Density of 
So P=13600 x 9.81 x 0.755
P=100.72 KPa
We know that
Absolute pressure=atmospheric pressure + gauge pressure
But here given that 30 KPa is a Vacuum pressure ,so we will take it as negative.
Absolute pressure=atmospheric pressure + gauge pressure
Absolute pressure=100.72 - 30 KPa
So
Absolute pressure=70.72 KPa
Answer:
True because he is working his arms to lift and hold the weight
Explanation:
Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.