21) Acceleration from D to E: 
22) The acceleration of the bus from D to E is 
Explanation:
21)
The acceleration of an object is equal to the rate of change of velocity of the object. Mathematically:

where
u is the initial velocity
v is the final velocity
t is the time elapsed
In this problem, we want to measure the acceleration of the bus from point D to point E. We have:
- Initial velocity at point D: u = 0
- Final velocity at point E: v = 5 m/s
- Time elapsed from D to E: t = 21 - 16 = 5 s
Therefore, the acceleration between D and E is

22) This question is the same as 21), so the result is the same.
Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
The chaotic nature of the Solar System excluding Pluto was established by the numerical computation of the maximum Lyapunov exponent of its secular system over 200 myr.
<h3>What is chaotic motion of the solar system ?</h3>
There has been an increase in awareness of chaotic dynamics in the solar system over the past 20 years. The orbits of tiny objects in the solar system, such as asteroids, comets, and interplanetary dust, are now known to be chaotic and to experience significant variations across geological time periods.
- a completely unpredictable orbit, or one where significant changes in the orbit can result from even small changes in the position and/or velocity of the orbiting entity.
Learn more about Chaotic motion here:
brainly.com/question/13717859
#SPJ4
Momentum, p = m.v
m of the girl = 60.0 kg
m of the boat = 180 kg
v of the girl = 4.0 m/s
A) Momentum of the girl as she is diving:
p = m.v = 60.0 kg * 4.0 m/s = 24.0 N/s
B) momentum of the raft = - momentum of the girl = -24.0 N/s
C) speed of the raft
p = m.v ; v = p/m = 24.0N/s / 180 kg = -0.13 m/s [i.e. in the opposite direction of the girl's velocity]
Answer:
The speed of the car when load is dropped in it is 17.19 m/s.
Explanation:
It is given that,
Mass of the railroad car, m₁ = 16000 kg
Speed of the railroad car, v₁ = 23 m/s
Mass of additional load, m₂ = 5400 kg
The additional load is dropped onto the car. Let v will be its speed. On applying the conservation of momentum as :



v = 17.19 m/s
So, the speed of the car when load is dropped in it is 17.19 m/s. Hence, this is the required solution.
Answer:
O D.30.0 Ω
Explanation:
this <em>is </em><em>the </em><em>correct </em><em>answer</em><em>!</em>