His weight depends on where he is, because
Weight = (mass) x (gravity in the place where the mass is) .
For example:
-- If this man is on Mars, his weight is (110 kg) x (3.7 m/s²) = 408 Newtons
-- If he is on the Moon, his weight is (110 kg) x (1.6 m/s²) = 176 Newtons
-- If he is on Earth, his weight is (110 kg) x (9.8 m/s²) = 1,078 Newtons
-- If he is in a spacecraft coasting from one to another, his weight is zero.
Answer:
<h2>
HIGHER & MORE OR LARGER OR MORE </h2>
HENCE, THE ANSWER IS A. :)
Explanation:
<em><u>#</u></em><em><u>CARRYONLEARNING</u></em>
<em><u>BRAINLIEST</u></em><em><u> </u></em><em><u> </u></em><em><u>PLEASE</u></em><em><u> </u></em><em><u>I </u></em><em><u>REALLY </u></em><em><u>NEED</u></em><em><u> </u></em><em><u>IT</u></em>
We are given with the data that says the probability that a battery will last 10 hr or more is 0.8 and the probability <span>that it will last 15 hr or more is 0.11. In this case, the probability that the battery lasts at least 10 hours and even 15 hrs more is 0.11 / 0.8 or equal to 13.75 percent.</span>
Answer:
Distance= 2.3864m
Explanation:
So that the balance is in equilibrium parallel to the floor, we must match the moment each man makes with respect to the pivot point.
In many cases the point of application of force does not coincide with the point of application in the body. In this case the force acts on the object and its structure at a certain distance, by means of an element that transfers that action of this force to the object.
This combination of force applied by the distance to the point of the structure where it is applied is called the moment of force F with respect to the point. The moment will attempt a rotation shift or rotation of the object. The distance from the force to the point of application is called the arm.
Mathematically it is calculated by expression:
M= F×d
The moment caused by the first man is:
M1= 75kg × (9.81m/s²) × 1.75m= 1287.5625 N×m
The moment caused by the second man must be equal to that caused by the first by which:
M2= 1287.5625 N×m= 55kg × (9.81m/s²) × distance ⇒
⇒distance= (1287.5625 N×m)/( (55kg × (9.81m/s²) )= 2.3864m
At this distance from the pivot point, the second should sit down so that the balance is balanced parallel to the ground.
When an elevator is accelerating downward, the normal force is equal to mg-ma (hence you feel a little lighter when accelerating downwards)
Therefore, the upward force of the elevator floor on the person must be less than 750N