Static charge occurs when there is an imbalance of positively and negatively charged atoms, so this one should be the last option that it involves ions as well.
Hope this helps :)
Compute the ball's angular speed <em>v</em> :
<em>v</em> = (1 rev) / (2.3 s) • (2<em>π</em> • 180 cm/rev) • (1/100 m/cm) ≈ 4.917 m/s
Use this to find the magnitude of the radial acceleration <em>a</em> :
<em>a</em> = <em>v </em>²/<em>R</em>
where <em>R</em> is the radius of the circular path. We get
<em>a</em> = <em>v</em> ² / (180 cm) = <em>v</em> ² / (1.8 m) ≈ 13.43 m/s²
The only force acting on the ball in the plane parallel to the circular path is the tension force. By Newton's second law, the net force acting on the ball has magnitude
∑ <em>F</em> = <em>m</em> <em>a</em>
where <em>m</em> is the mass of the ball. So, if <em>t</em> denotes the magnitude of the tension force, then
<em>t</em> = (1.6 kg) (13.43 m/s²) ≈ 21 N
I think ....... the answer will be ......
like a theory
i think this is the incomplete page that you are showing but the answer is
:-
<h2><u>
B</u></h2>
<span>As the clay content increases, there is more surface area in the soil for organic matter to adsorb to, which decreases the rate of decomposition.</span>