Answer:
Rutherford was the first scientist who proposed the nuclear model of the atom. According to his atomic model, most of the space of an atom is empty, while the nucleus containing protons and neutrons lie at the center of the atom while electrons revolve around nucleus in definite orbits.
If we talk about studies of some other scientists like Dalton, Neil Bohr and JJ Thomson, they all are compatible with Rutherford's results to a large extent.
For example: Dalton's atomic model assumed that atoms of any substance are similar in size and atoms react to form compounds. Rutherford's concept indicated that atoms contain electrons and they are in a specific number which can be shared to form compounds.
If we talk about Bohr's model, it states that electrons revolve around nucleus in specific shells, this again is compatible with Rutherford's results which gave the concept of shells.
If we talk about Thomson's Plum pudding model, that describe atom as negative particles floating within a soup of diffuse positive charge. This is also compatible with the results of Rutherford that state that negative electrons surround positive nucleus.
Rutherford's model was best atomic model but still it took help from many previous studies and therefore was compatible with the results of old models.
Hope it help!
The Beer-Lambert law states that A = E*c*l where A is absorbance, E is the molar absorbance coeffecient, c is concentration and l is path length. Therefore the absorbance is directly proportional to concentration, and by increasing the concentration by a factor of 3, absorbance will increase by a factor of 3 giving A = 1.584
<span>the Brazil Current has the warmest water</span>
Answer:
Reagents: 1)
2)
, 
Mechanism: Hydroboration
Explanation:
In this case, we have a <u>hydration of alkene</u>s reaction. But, in this example, we have an <u>anti-Markovnikov reaction</u>. In other words, the "OH" is added in the least substituted carbon. Therefore we have to choose an anti-Markovnikov reaction: <u>"hydroboration"</u>.
The <u>first step</u> of this reaction is the addition of borane (
) to the double bond. Then in the <u>second step</u>, we have the deprotonation of the hydrogen peroxide, to obtain the peroxide anion. In the <u>third step</u>, the peroxide anion attacks the molecule produced in the first step to produce a complex compound in which we have a bond "
". In <u>step number 4</u> we have the migration of the C-B bond to oxygen. Then in <u>step number 5</u>, we have the attack of
on the
to produce an alkoxide. Finally, the water molecule produce in step 2 will <u>protonate</u> the molecule to produce the alcohol.
See figure 1
I hope it helps!
Answer:
volume is equal to the mass divided by the density (V = M/d).