For Fraunhofer diffraction at a single slit would be represented by:
<span>a sinθ = mλ
</span><span>It should be noted that the angle needs be halved because we are only concerned with the angle between m=1 and m=0 and they gave you the angle between m=1 to the right of the center and m=1 on the left of the center. We calculate as follows:
</span>
<span>a sin(45/2)=(1)(470)
a = 1228 nm
Hope this answers the question. Have a nice day.
</span>
Electricity passes through it
Answer:
0.0268 m
Explanation:
Draw a free body diagram of the block. There are three forces: weight force mg pulling down, buoyancy of the oil B₁ pushing up, and buoyancy of the water B₂ pushing up.
Sum of forces in the y direction:
∑F = ma
B₁ + B₂ − mg = 0
ρ₁V₁g + ρ₂V₂g − mg = 0
ρ₁V₁ + ρ₂V₂ = m
ρ₁V₁ + ρ₂V₂ = ρV
ρ₁Ah₁ + ρ₂Ah₂ = ρAh
ρ₁h₁ + ρ₂h₂ = ρh
(930 kg/m³)h₁ + (1000 kg/m³)h₂ = (968 kg/m³) (4.93 cm)
Since the block is fully submerged, h₁ + h₂ = 4.93 cm.
(930 kg/m³) (4.93 cm − h₂) + (1000 kg/m³)h₂ = (968 kg/m³) (4.93 cm)
h₂ = 2.68 cm
h₂ = 0.0268 m
Answer:
Aluminium
Explanation:
Aluminium has the least resistance since It has 3 free electrons per atom. Its resistivity is low compared to other metals provided in the choices (gold, nichrome, tungsten). Low resistivity of metals means a high conductance of the metal referred to.
Answer:
Explanation:
Given
winning car accelerates with a and its final velocity is v
considering they both start from rest
time taken by winning car is
v=u+at
where u=initial velocity
a=acceleration
t=time


Now loosing car is accelerating with 
Distance traveled by loosing car in time t



Thus distance d traveled by loosing car is given by 