1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
professor190 [17]
3 years ago
11

5. (5 points) Select ALL statements that are TRUE A. For flows over a flat plate, in the laminar region, the heat transfer coeff

icient is decreasing in the flow direction B. For flows over a flat plate, in the turbulence region, the heat transfer coefficient is decreasing in the flow direction C. For flows over a flat plate, the transition from laminar to turbulence flow only happens for rough surface D. For flows over a flat plate, if the length of the plate in the flow direction is long enough, the flows will inevitably become turbulent E. In general, turbulence flows have a larger heat transfer coefficient compared to laminar flows 6. (5 points) Select ALL statements that are TRUE A. For the flow in a pipe with constant cross-section area, both hydrodynamic and thermal boundary layer thicknesses increasingly grow in the flow direction B. In the hydrodynamic fully developed region, the mean velocity of the flow becomes constant C. In the thermally fully developed region, the mean temperature of the flow becomes constant D. For internal flows, if Pr>1, the flows become hydrodynamically fully developed before becoming thermally fully developed E. For internal flows, if Pr>1, the flows become thermally fully developed before becoming hydrodynamically fully developed
Engineering
1 answer:
finlep [7]3 years ago
7 0

Answer:

The following statements are true:

A. For flows over a flat plate, in the laminar region, the heat transfer coefficient is decreasing in the flow direction

C. For flows over a flat plate, the transition from laminar to turbulence flow only happens for rough surface

E. In general, turbulence flows have a larger heat transfer coefficient compared to laminar flows 6.

Select ALL statements that are TRUE

B. In the hydrodynamic fully developed region, the mean velocity of the flow becomes constant

D. For internal flows, if Pr>1, the flows become hydrodynamically fully developed before becoming thermally fully developed

Explanation:

You might be interested in
Chlorine is one of the important commodity chemicals for the global economy. Before the advent of large scale
artcher [175]

The composition of gas in the feed, the percentage conversion and the

theoretical yield are combined to give the product stream composition.

Response:

The composition of gas in the product stream are;

  • HCl: 0.4 kmol/h, Cl₂: 1.6 kmol/h, H₂O: 1.6 kmol/h, O₂: 0.5 kmol/h

<h3>How can percentage conversion give the contents of the product stream?</h3>

The amount of oxygen used = 30% exceeding the theoretical amount

Number of moles of hydrochloric acid = 4 kmol/h

Percentage conversion = 80%

Required:

The composition of the gas in the product feed.

Solution;

The given reaction is; 4HCl + O₂ \longrightarrow 2Cl₂ + 2H₂O

Percentage \ conversion = \mathbf{ \dfrac{Moles \ of \ limiting \ reactant \ reacted}{Moles \  of \ limiting \ reactant \ supplied \ in \ the \, feed}}

Which gives;

80 \% = \mathbf{ \dfrac{Moles \ of \ limiting \ reactant \ reacted}{4 \, kmol/h}}

Moles of limiting reactant reacted = 4 kmol/h × 0.80 = 3.6 kmol/h

Which gives;

Number of moles of HCl in the stream = 4 kmol/h - 3.6 kmol/h = 0.4 kmol/h

Number of moles of Cl₂ produced = 2 kmol/h × 0.8 = 1.6 kmol/h

Similarly;

Number of moles of H₂O produced = 2 kmol/h × 0.8 = 1.6 kmol/h

Number of moles of O₂ in the product stream = 30% × 1 kmol/h + 20% × 1 kmol/h = 0.5 kmol/h

The composition of the production stream is therefore;

  • <u>HCl: 0.4 kmol/h</u>
  • <u>Cl₂: 1.6 kmol/h</u>
  • <u>H₂O: 1.6 kmol/h</u>
  • <u>O₂: 0.5 kmol/h</u>

Learn more about theoretical and actual yield here:

brainly.com/question/14668990

brainly.com/question/82989

7 0
2 years ago
What Happens If A Sonic Boom Is Created?
Volgvan

Answer:

Explanation:

A sonic boom is a loud sound kind of like an explosion. It's caused by shock waves created by any object that travels through the air faster than the speed of sound. Sonic booms create huge amounts of sound energy. When an object moves through the air, it makes pressure waves in front of and behind it.

8 0
2 years ago
What should you, the worker, be aware of with regard to evacuation procedures at your workplace
Alinara [238K]

Answer:

As a worker, it is important to follow the proper set of instructions or emergency plans during an emergent situation. Not carefully following the rules may result to a bigger problem such as further injury and damage to property.

Explanation:

Evacuation Procedure- This is a step-by-step procedure that people follow in order to safely vacate any building or place. This procedure is applicable to any situation, such as the workplace. This is now called the <em>Workplace Evacuation Procedure. </em>This is very important because there are so many unpredictable situations or events that are happening in the world right now, such as fire or earthquake. This procedure is being done through an evacuation plan.

The awareness of the workers regarding the proper way to evacuate during emergency situation is very important. It will be easier for them to know where to locate the nearest exit route. They will also learn to stop any form of device or equipment that could cause a hazzard during the situation. In case of the hospital, which is also a workplace, the employees will also learn how to assist the patients before themselves. They will also know where to assemble if there's a need to do so.

7 0
3 years ago
Read 2 more answers
An air-standard Diesel cycle engine operates as follows: The temperatures at the beginning and end of the compression stroke are
Vika [28.1K]

This question is incomplete, the complete question is;

An air-standard Diesel cycle engine operates as follows: The temperatures at the beginning and end of the compression stroke are 30 °C and 700 °C, respectively. The net work per cycle is 590.1 kJ/kg, and the heat transfer input per cycle is 925 kJ/kg. Determine the a) compression ratio, b) maximum temperature of the cycle, and c) the cutoff ratio, v3/v2.

Use the cold air standard assumptions.

Answer:

a) The compression ratio is 18.48

b) The maximum temperature of the cycle is 1893.4 K

c) The cutoff ratio, v₃/v₂ is 1.946

Explanation:

Given the data in the question;

Temperature at the start of a compression T₁ = 30°C = (30 + 273) = 303 K

Temperature at the end of a compression T₂ = 700°C = (700 + 273) = 973 K

Net work per cycle W_{net = 590.1 kJ/kg

Heat transfer input per cycle Qs = 925 kJ/kg

a) compression ratio;

As illustrated in the diagram below, 1 - 2 is adiabatic compression;

so,

Tγ^{Y-1 = constant { For Air, γ = 1.4 }

hence;

⇒ V₁ / V₂ = ( T₂ / T₁ )^{\frac{1}{Y-1}

so we substitute

⇒ V₁ / V₂ = (  973 K / 303 K  )^{\frac{1}{1.4-1}

= (  3.21122  )^{\frac{1}{0.4}

= 18.4788 ≈ 18.48

Therefore, The compression ratio is 18.48

b) maximum temperature of the cycle

We know that for Air, Cp = 1.005 kJ/kgK

Now,

Heat transfer input per cycle Qs = Cp( T₃ - T₂ )

we substitute

925 = 1.005( T₃ - 700 )

( T₃ - 700 ) = 925 / 1.005

( T₃ - 700 ) = 920.398

T₃ = 920.398 + 700

T₃ = 1620.398 °C

T₃ = ( 1620.398 + 273 ) K

T₃ = 1893.396 K ≈ 1893.4 K

Therefore, The maximum temperature of the cycle is 1893.4 K

c)  the cutoff ratio, v₃/v₂;

Since pressure is constant, V ∝ T

So,

cutoff ratio S = v₃ / v₂  = T₃ / T₂

we substitute

cutoff ratio S = 1893.396 K / 973 K

cutoff ratio S = 1.9459 ≈ 1.946

Therefore, the cutoff ratio, v₃/v₂ is 1.946

8 0
3 years ago
To determine if a product or substance being used is hazardous, consult:__________.
qwelly [4]

Answer:

Option B: An MSDS

Explanation:

A dictionary is used to check up the meaning of general words and not for checking if a substance being used is hazardous. Option A is wrong.

MSDS means "Material Safety Data Sheet" and it contains documents with information that relates to occupational health & safety for checking various substances and products. Thus, option B is correct.

SAE stands for Society of Automotive Engineering and their standards pertain to mainly Automobiles. Thus option C is wrong.

EPA guidelines are mainly for checking facility and environmental health and safety compliance. Thus, option D is wrong.

3 0
3 years ago
Other questions:
  • Tanya Pierce, President and owner of Florida Now Real Estate is seeking your assistance in designing a database for her business
    9·1 answer
  • A closed, rigid, 0.45 m^3 tank is filled with 12 kg of water. The initial pressure is p1 = 20 bar. The water is cooled until the
    15·1 answer
  • Exercise 19
    15·1 answer
  • .a. What size vessel holds 2 kg water at 80°C such that 70% is vapor? What are the pressure and internal energy? b. A 1.6 m3 ves
    5·1 answer
  • The collar A, having a mass of 0.75 kg is attached to a spring having a stiffness of k = 200 N/m . When rod BC rotates about the
    15·1 answer
  • The properties of the air in the inlet section with A1 = 0.25ab m2 in a converging-diverging channel are given as U1 = 25a,b m/s
    8·1 answer
  • I need solution fast plesss​
    9·1 answer
  • I’m doing a project on renewable energy. There are 6 energy sources. Solar, wind, geothermal, hydroelectric, tidal, and biomass.
    14·2 answers
  • 1. A hydro facility operates with an elevation difference of 50 m and a flow rate of 500 m3/s. If the rotational speed is 90 RPM
    12·1 answer
  • Describe the greatest power in design according to Aravena?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!