(a) The number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b) ρ = n X (AM) / v X Nₐ
<u>Explanation:</u>
<u />
Given-
Lattice parameter of Li = 3.5089 X 10⁻⁸ cm
1 vacancy per 200 unit cells
Vacancy per cell = 1/200
(a)
Number of vacancies per cubic cm = ?
Vacancies/cm³ = vacancy per cell / (lattice parameter)³
Vacancies/cm³ = 1 / 200 X (3.5089 X 10⁻⁸cm)³
Vacancies/cm³ = 1.157 X 10²⁰
Therefore, the number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b)
Density is represented by ρ
ρ = n X (AM) / v X Nₐ
where,
Nₐ = Avogadro number
AM = atomic mass
n = number of atoms
v = volume of unit cell
Answer:
Re-torque the bolts as required while your engine is warm. But if you're using aluminum cylinder heads, you should wait until your engine is complete cooled until re-torquing
Answer:
The diameter is 50mm
Explanation:
The answer is in two stages. At first the torque (or twisting moment) acting on the shaft and needed to transmit the power needs to be calculated. Then the diameter of the shaft can be obtained using another equation that involves the torque obtained above.
T=(P×60)/(2×pi×N)
T is the Torque
P is the the power to be transmitted by the shaft; 40kW or 40×10³W
pi=3.142
N is the speed of the shaft; 250rpm
T=(40×10³×60)/(2×3.142×250)
T=1527.689Nm
Diameter of a shaft can be obtained from the formula
T=(pi × SS ×d³)/16
Where
SS is the allowable shear stress; 70MPa or 70×10⁶Pa
d is the diameter of the shaft
Making d the subject of the formula
d= cubroot[(T×16)/(pi×SS)]
d=cubroot[(1527.689×16)/(3.142×70×10⁶)]
d=0.04808m or 48.1mm approx 50mm
Question:
In a typical transmission line, the current I is very small and the voltage V is very large. A unit length of the line has resistance R.
For a power line that supplies power to 10 000 households, we can conclude that
a) IV < I²R
b) I²R = 0
c) IV = I²R
d) IV > I²R
e) I = V/R
Answer:
d) IV > I²R
Explanation:
In a typical transmission line, the current I is very small and the voltage V is very high as to minimize the I²R losses in the transmission line.
The power delivered to households is given by
P = IV
The losses in the transmission line are given by
Ploss = I²R
Therefore, the relation IV > I²R holds true, the power delivered to the consumers is always greater than the power lost in the transmission line.
Moreover, losses cannot be more than the power delivered. Losses cannot be zero since the transmission line has some resistance. The power delivered to the consumers is always greater than the power lost in the transmission.
Answer:
6.4 m/s
Explanation:
From the equation of continuity
A1V1=A2V2 where A1 and V1 are area and velocity of inlet respectively while A2 and V2 are the area and velocity of outlet respectively


where r1 and r2 are radius of inlet and outlet respectively
v1 is given as 1.6 m/s
Therefore

