1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrac [35]
3 years ago
13

A fire hose nozzle has a diameter of 1.125 in. According to some fire codes, the nozzle must be capable of delivering at least 2

50 gal/min. If the nozzle is attached to a 3-in.-diameter hose, what pressure must be maintained just upstream of the nozzle to deliver this flowrate?
Engineering
2 answers:
Furkat [3]3 years ago
7 0

Answer:

P_{1} = 403,708\,kPa\,(58.553\,psi)

Explanation:

Let assume that changes in gravitational potential energy can be neglected. The fire hose nozzle is modelled by the Bernoulli's Principle:

\frac{P_{1}}{\rho\cdot g} = \frac{P_{2}}{\rho \cdot g} + \frac{v^{2}}{2\cdot g}

The initial pressure is:

P_{1} = P_{2}+ \frac{1}{2}\cdot \rho v^{2}

The speed at outlet is:

v=\frac{\dot Q}{\frac{\pi}{4}\cdot D^{2}}

v=\frac{(250\,\frac{gal}{min} )\cdot (\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot [(1.125\,in)\cdot(\frac{0.0254\,m}{1\,in} )]^{2} }

v\approx 24.592\,\frac{m}{s}\,(80.682\,\frac{ft}{s} )

The initial pressure is:

P_{1} = 101.325\times 10^{3}\,Pa+\frac{1}{2}\cdot (1000\,\frac{kg}{m^{3}} )\cdot (24.592\,\frac{m}{s} )^{2}

P_{1} = 403,708\,kPa\,(58.553\,psi)

Contact [7]3 years ago
4 0

Answer:

P1 = 42.93 psi

Explanation:

For incompressible fluid, we know that;

A1V1 = A2V2

Making V1 the subject, we obtain;

V1 = A2V2/A1

Now A2V2 is the volumetric flow rate (V') .

Thus; V1 = V'/A1

A1 = πD²/4

Thus, V1 = 4V'/πD²

V' = 250 gal/min

But the diameter is in inches, let's convert to inches³/seconds.

Thus, V' = 250 x 3.85 = 962.5 in³/s

Substituting the relevant values to obtain,

V1 = (4 x 962.5)/(π x 3²) = 136.166 in/s.

Now let's convert to ft/s;

V1 = 136.166 x 0.0833 = 11.34 ft/s

Also for V2;

V2 = (4 x 962.5)/(π x 1.125²) = 968.29 in/s.

Now let's convert to ft/s;

V2 = 968.29 x 0.0833 = 80.66 ft/s

Setting bernoulli equation between the hose and the exit, we obtain;

(p1/γ) + (V1²/2g) = V2²/2g

Where V1 and V2 are intial and final velocities and γ is specific weight of water which is 62.43 lb/ft³ and g i acceleration due to gravity which is 32.2 ft/s²

Making p1 the subject, we obtain;

p1 = (γ/2g)(V2² - V1²)

p1 = (62.43/(2x32.2))(80.66² - 11.34²)

p1 = 6182.35 lb/ft²

So Converting to psi, we have;

p1 = 6182.35/144 = 42.93 psi

You might be interested in
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the stagnation temperature is 90°C. If the M
Naddika [18.5K]

Answer:

a. 318.2k

b. 45.2kj

Explanation:

Heat transfer rate to an object is equal to the thermal conductivity of the material the object is made from, multiplied by the surface area in contact, multiplied by the difference in temperature between the two objects, divided by the thickness of the material.

See attachment for detailed analysis

7 0
3 years ago
How do you check battery state of charge with a voltmeter
cupoosta [38]

Answer:

Depends on the battery and the current type.

Is it AC or DC?

Explanation:

Could you mark as brainiest.

I need it for my account

Thank you! :)

8 0
2 years ago
If a heat engine has an efficiency of 30% and its power output is 600 W, what is the rate of heat input from the combustion phas
jarptica [38.1K]

Answer:

The heat input from the combustion phase is 2000 watts.

Explanation:

The energy efficiency of the heat engine (\eta), no unit, is defined by this formula:

\eta = \frac{\dot W}{\dot Q} (1)

Where:

\dot Q - Heat input, in watts.

\dot W - Power output, in watts.

If we know that \dot W = 600\,W and \eta = 0.3, then the heat input from the combustion phase is:

\eta = \frac{\dot W}{\dot Q}

\dot Q = \frac{\dot W}{\eta}

\dot Q = \frac{600\,W}{0.3}

\dot Q = 2000\,W

The heat input from the combustion phase is 2000 watts.

8 0
2 years ago
Urgent please help!<br> What are non-ferrous metal and ferrous metal?
m_a_m_a [10]
In metallurgy, non-ferrous metals are metals or alloys that do not contain iron in appreciable amounts. Generally more costly than ferrous metals, non-ferrous metals are used because of desirable properties such as low weight, higher conductivity, non-magnetic property or resistance to corrosion
8 0
2 years ago
A three-phase wye-connected synchronous generator supplies a network through a transmission line. The network can absorb or deli
Amanda [17]

Answer:

the graph and the answer can be found in the explanation section

Explanation:

Given:

Network rated voltage = 24 kV

Impedance of network = 0.07 + j0.5 Ω/mi, 8 mi

Rn = 0.07 * 8 = 0.56 Ω

Xn = 0.5 * 8 = 4 Ω

If the alternator terminal voltage is equal to network rated voltage will have

Vt = 24 kV/√3 = 13.85 kV/phase

The alternative current is

I_{a} =\frac{40x10^{6} }{\sqrt{3}*24x10^{3}  } =926.2A

X_{s} =0.85\frac{13.85}{926.2} =12.7ohm

The impedance Zn is

\sqrt{0.56^{2}+4^{2}  } =4.03ohm

The voltage drop is

I_{a} *Z_{n} =926.2*4.03=3732.58V

r_{dc} =\frac{voltage}{2*current} =\frac{13.85}{2*926.2} =7.476ohm

rac = 1.2rdc = 1.2 * 7.476 = 8.97 Ω

The effective armature resistance is

Z_{s} =\sqrt{R_{a}^{2}+X_{s}^{2}    } =\sqrt{8.97^{2}+12.7^{2}  } =15.55ohm

The induced voltage for leading power factor is

E_{F} ^{2} =OB^{2} +(BC-CD)^{2}

if cosθ = 0.5

E_{F} =\sqrt{(13850*0.5)^{2}+(\frac{3741}{2}-926.2*12.7)^{2}   } =11937.51V

if cosθ= 0.6

EF = 12790.8 V

if cosθ = 0.7

EF = 13731.05 V

if cosθ = 0.8

EF = 14741.6 V

if cosθ = 0.9

EF = 15809.02 V

if cosθ = 1

EF = 13975.6 V

The voltage regulation is

\frac{E_{F}-V_{t}  }{V_{t} } *100

For each value:

if cosθ = 0.5

voltage regulation = -13.8%

if cosθ = 0.6

voltage regulation = -7.6%

if cosθ = 0.7

voltage regulation = -0.85%

if cosθ = 0.8

voltage regulation = 6.4%

if cosθ = 0.9

voltage regulation = 14%

if cosθ = 1

voltage regulation = 0.9%

the graph is shown in the attached image

for 10% of regulation the power factor is 0.81

8 0
3 years ago
Other questions:
  • An isentropic steam turbine processes 5.5 kg/s of steam at 3 MPa, which is exhausted at 50 kPa and 100°C. Five percent of this f
    13·1 answer
  • Water flows through a horizontal plastic pipe with a diameter of 0.15 m at a velocity of 15 cm/s. Determine the pressure drop pe
    11·1 answer
  • A fluid of specific gravity 0.96 flows steadily in a long, vertical 0.71-in.-diameter pipe with an average velocity of 0.90 ft/s
    5·2 answers
  • What is the relative % change in P if we double the absolute temperature of an ideal gas keeping mass and volume constant?
    14·1 answer
  • Different between an architect and an engineer​
    15·1 answer
  • Resistors of 150 Ω and 100 Ω are connected in parallel. What is their equivalent resistance?
    13·1 answer
  • A building permit allows a builder to?
    6·1 answer
  • How to make text take shape of object in affinity designer
    12·1 answer
  • Incremental software development could be very effectively used for customers who do not have a clear idea about the systems nee
    5·1 answer
  • All of the dimensions on an aircraft drawing are_________<br> to the bottom of the drawing.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!