Answer:
P1 = 42.93 psi
Explanation:
For incompressible fluid, we know that;
A1V1 = A2V2
Making V1 the subject, we obtain;
V1 = A2V2/A1
Now A2V2 is the volumetric flow rate (V') .
Thus; V1 = V'/A1
A1 = πD²/4
Thus, V1 = 4V'/πD²
V' = 250 gal/min
But the diameter is in inches, let's convert to inches³/seconds.
Thus, V' = 250 x 3.85 = 962.5 in³/s
Substituting the relevant values to obtain,
V1 = (4 x 962.5)/(π x 3²) = 136.166 in/s.
Now let's convert to ft/s;
V1 = 136.166 x 0.0833 = 11.34 ft/s
Also for V2;
V2 = (4 x 962.5)/(π x 1.125²) = 968.29 in/s.
Now let's convert to ft/s;
V2 = 968.29 x 0.0833 = 80.66 ft/s
Setting bernoulli equation between the hose and the exit, we obtain;
(p1/γ) + (V1²/2g) = V2²/2g
Where V1 and V2 are intial and final velocities and γ is specific weight of water which is 62.43 lb/ft³ and g i acceleration due to gravity which is 32.2 ft/s²
Making p1 the subject, we obtain;
p1 = (γ/2g)(V2² - V1²)
p1 = (62.43/(2x32.2))(80.66² - 11.34²)
p1 = 6182.35 lb/ft²
So Converting to psi, we have;
p1 = 6182.35/144 = 42.93 psi