Answer is: both reactions are exothermic.
<span>In exothermic reactions, heat is released and enthalpy of reaction is less than zero (as it show second chemical reaction).
According to Le Chatelier's principle when the reaction
is <span>exothermic heat is included as a
product (as it show first chemical reaction).</span></span>
Answer:
The answer to your question is maybe letter D, but the last oxygen needs a number 6.
Explanation:
The empirical formula gives the actual elements that form part of a molecule but not the total numbers.
The molecular formula gives the total number of atoms of each element in a molecule.
We must factor the molecular formula to know if a formula is the empirical formula of that.
A. CH₄ C₂H₆ = 2(CH₃) these are not empirical molecular formulas
B. CH₂O C₄H₆O these are not empirical-molecular formulas
C. O₂ O₃ these are not empirical-molecular formulas
D. C₃H₄O₃ C₆H₈O these are not empirical-molecular formulas
the last oxygen needs a number 6 to be
the answer.
Long wavelengths and low frequencies
Answer:
Michaelis constant is known as km which is the substrate concentration that encourages the compound to work at half maximum velocity represented by Vmax/2. Michaelis constant is inversely related to the substrate and the affinity of the enzyme.
Induced fit model: The premise of the purported induced fit hypothesis, which expresses that the attachment or association of a substrate or some other atom to an enzyme causes an adjustment to the enzyme in order to fit or restrain its activity.
In substrate, analog Km or Michaelis constant will be high as the substrate will stay because of analogs inhibit activity.
In the transitional state, analog Km will be in the middle of the substrate and product analogs. Progress state analogs are synthetic mixes with a structure catalyzed reaction that looks like the progressing condition of a substrate atom in a compound enzyme.
In item simple thus Km is the least.
0.0013 M = product ananlog,
0.025 M=Transition state, and
0.0045 M = Substrate analog