Answer:
196 gdm-3
Explanation:
There are two major units of concentration, moldm-3 and gdm-3. The first unit refers to molar concentration while the second unit refers to mass concentration. Both units are useful in chemistry when describing the concentration of solutions as deemed expedient in each particular case.
Here we are required to compute the mass concentration from the molar concentration. We must recall that; mass concentration= molar concentration × molar mass
Let us first obtain the molar mass of H2SO4 from the relative atomic masses given=
2(1) + 32 + 4(16) = 98 gmol-1
Molar concentration of H2SO4 = 2 moldm-3
Mass concentration= 2 moldm-3 × 98 gmol-1
Mass concentration = 196 gdm-3
Answer:
3.3 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 2.7 atm
- Initial volume (V₁): 1.6 L
- Final pressure (P₂): 1.3 atm
Step 2: Calculate the final volume of the balloon
Inside the balloon we have gas. If we consider it behaves as an ideal gas, we can calculate the final volume using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 2.7 atm × 1.6 L / 1.3 atm
V₂ = 3.3 L
Answer:
Explanation:
pH = 12
[H⁺] = 10⁻¹²
[OH⁻¹ ] [H⁺] = 10⁻¹⁴
[OH⁻¹ ] = 10⁻²
NaOH = Na⁺¹ + OH⁻¹
NaOH is a strong base so it dissociates 100%
[OH⁻¹ ] = 10⁻²
molarity of NaOH = 10⁻² M
= .01 M .
Answer:
B) Although this site is not desirable for making a bond between atoms, it is a good site in the sense that the electrons can be close to the nucleus.
Explanation:
An antibonding orbital points away from the nuclei, with a node between them, so the electrons are not held close to the nuclei. The orbital is not desirable for bonding.
The diagram below shows a σ*1s molecular orbital, but a σ*2s orbital has a similar shape.
A) is true. The σ*1s orbital has the lowest energy.
C) is true. Any orbital can accommodate at most one electron pair.
D) is may be true. Orbital energy decreases as atomic number increases, so the orbital energy of an N₂ σ*2s molecule may be close to that of a sulfur atom's 2s orbital.