Normal force, weight, Kinetic friction, and air resistance are a few I think of the top of my head.
I hope this helps
At the present time, the only way we know of that light can get shifted
toward the blue end of the spectrum is the Doppler effect ... wavelengths
appear shorter than they should be when the source is moving toward us.
IF that's true in the case of the Andromeda galaxy, it means the galaxy is
moving toward us.
We use the same reasoning to conclude that all the galaxies whose light is red-shifted are moving away from us. That includes the vast majority of all galaxies that we can see, and it strongly supports the theory of the big bang
and the expanding universe.
If somebody ever comes along and discovers a DIFFERENT way that light
can get shifted to new, longer or shorter wavelengths, then pretty much all
of modern Cosmology will be out the window. There's a lot riding on the
Doppler effect !
When travelling on a two lane highway driving 50 to 55 mph, you need a 10-12 second gap in oncoming traffic to pass safety. At 55 mph, you will travel over 800 feet in 10-12 seconds so will an oncoming vehicle. That means you need over 1600 feet which is about 1/3 of a mile to pass safety. It is harder to see and judge the speed of oncoming vehicles that are traveling 1/3 of a mile or more away from you.
Answer:
75 Newtons.
Explanation:
From Newton's second law of motion,
F = m(v-u)/t................... Equation 1
Where F = force exerted by the ball on the bat, m = mass of the ball, v = final velocity of the ball, u = initial velocity of the ball, t = time
Given: m = 0.6 kilogram, u = 0 meter per seconds (at rest), v = 25 meters per seconds, t = 0.2 seconds.
Substitute into equation 1
F = 0.6(25-0)/0.2
F = 3(25)
F = 75 Newton.
Hence the magnitude of the average force exerted by the ball on the bat = 75 Newtons.