Answer:
[Cr(NH3)6.]C13
Explanation:
Alfred Werner's coordination theory (1893) recognized two kinds of valency;
Primary valency which are nondirectional and secondary valency which are directional.
Hence, the number of counter ions precipitated from a complex depends on the primary valency of the central metal ion in the complex.
We must note that it is only these counter ions that occur outside the coordination sphere that can be precipitated by AgNO3.
If we consider the options carefully, only [Cr(NH3)6.]C13 possess counter ions outside the coordination sphere which can be precipitated when treated with aqueous AgNO3.
Answer:
Nuclear fusion
Explanation:
Nuclear fusion is the source of Sun's energy.. At the core where temperature and pressure are very high hydrogen atoms fuse into helium atom and release energy in the form of Gama rays.
Repeat trials multiple times
The limiting reagent when 5 g of NaOH and 4.4 g CO₂ allowed to react will be NaOH
<h3>What is Limiting reagent ?</h3>
The limiting reactant (or limiting reagent) is the reactant that gets consumed first in a chemical reaction and therefore limits how much product can be formed.
Given chemical equation in balanced form ;
2NaOH(s) + CO₂(g) → Na₂CO₃(s) + H₂O(l).
According to the Chemical equation ;
- The limiting reagent when 5 g of NaOH and 4.4 g CO₂ allowed to react will be NaOH
If 44 g CO₂ requires 80 g of NaOH, therefore, 4.4 g CO₂ will require atleast 8 g of NaOH.
But the available quantity is 5 g NaOH. thus, NaOH is the Limiting reagent.
- 6.625 g of Na₂CO₃ are expected to be produced 5.0 g of NaOH and 4.4 g of CO₂ are allowed to react
As 80 g NaOH produces 106 g of Na₂CO₃.
Therefore 5 g NaoH will produce ;
106 / 80 x 5 = 6.625 g
Learn more about limiting reagent here ;
brainly.com/question/11848702
#SPJ1
it can with stand certain pressure inside, once it exceeds the pressure will be released by making a whistle....... hence it wont burst