Answer:

Explanation:
= Mass of metal = 19 g
= Specific heat of the metal
= Temperature difference of the metal = 
V = Volume of water = 150 mL = 
= Density of water = 
= Specific heat of the water = 4.186 J/g°C
= Temperature difference of the water = 
Mass of water

Heat lost will be equal to the heat gained so we get

The specific heat of the metal is
.
It is 5n , that’s it the difference between the 10n and the 15 n
Base + Acid = Water + Salt
It makes salt water... water and potassium sulfate
Balanced rxn is:
2KOH + H2SO4 = 2H2O + KSO4
Answer:
24 atm is the total pressure exerted by the gases
Explanation:
We propose this situation:
In a vessel, we have 4 gases (for example, hydrogen, Xe, methane and chlorine)
Each of the gases has the same pressure:
6 atm → hydrogen
6 atm → xenon
6 atm → methane
6 atm → chlorine
To determine the total pressure, we sum all of them:
Partial pressure H₂ + Partial pressure Xe + Partial pressure CH₄ + Partial pressure Cl₂ = Total P
6 atm + 6 atm + 6 atm + 6 atm = 24atm
Answer:
Here's what I get
Explanation:
You may have done a Williamson synthesis of guaifenesin by reacting guaiacol with 3-chloropropane-1,2-diol.
A. Mechanism
Step 1
NaOH converts guaiacol into a phenoxide ion.
Step 2
The phenoxide acts as the nucleophile in an SN2 reaction to displace the Cl from the alkyl halide.
B. Improve the yield
You probably carried out the reaction in ethanol solution — a polar protic solvent.
You might try doing the reaction in a polar aprotic solvent— perhaps DMSO.
A polar aprotic solvent does not hydrogen bond to nucleophiles, so they become stronger.
C. Another method of ether synthesis —dehydration of alcohols
Sulfuric acid catalyzes the conversion of primary alcohols to ethers.
This is also a nucleophilic displacement reaction.
Protonation of the OH converts it into a better leaving group.
Attack by a second molecule of alcohol forms the protonated ether.
A molecule of water then removes the proton.