1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhenek [66]
2 years ago
11

One ball of mass 0.600kg travelling 9.00m/s to the right collides head on elastically with a second ball of mass 0.300kg travell

ing 8.00m/s to the left.what are their velocities after collisions?
Physics
1 answer:
Alina [70]2 years ago
6 0

Let m₁ and v₁ denote the mass and initial velocity of the first ball, and m₂ and v₂ the same quantities for the second ball. Momentum is conserved throughout the collision, so

m₁ v₁ + m₂ v₂ = m₁ v₁' + m₂ v₂'

where v₁' and v₂' are the balls' respective velocities after the collision.

Kinetic energy is also conserved, so

1/2 m₁ v₁² + 1/2 m₂ v₂² = 1/2 m₁ (v₁')² + 1/2 m₂ (v₂')²

or

m₁ v₁² + m₂ v₂² = m₁ (v₁')² + m₂ (v₂')²

From the momentum equation, we have

(0.600 kg) (9.00 m/s) + (0.300 kg) (-8.00 m/s) = (0.600 kg) v₁' + (0.300 kg) v₂'

which simplifies to

10.0 m/s = 2 v₁' + v₂'

so that

v₂' = 10.0 m/s - 2 v₁'

From the energy equation, we have

(0.600 kg) (9.00 m/s)² + (0.300 kg) (-8.00 m/s)² = (0.600 kg) (v₁')² + (0.300 kg) (v₂')²

which simplifies to

67.8 J = (0.600 kg) (v₁')² + (0.300 kg) (v₂')²

or

226 m²/s² = 2 (v₁')² + (v₂')²

Substituting v₂' yields

226 m²/s² = 2 (v₁')² + (10.0 m/s - 2 v₁')²

which simplifies to

3 (v₁')² - (20.0 m/s) v₁' - 63.0 m²/s² = 0

Solving for v₁' using the quadratic formula gives two solutions,

v₁' ≈ -2.33 m/s   or   v₁' = 9.00 m/s

but the second solution corresponds to the initial conditions, so we omit that one.

Then the second ball has velocity

v₂' = 10.0 m/s - 2 (-2.33 m/s)

v₂' ≈ 14.7 m/s

You might be interested in
An unstrained horizontal spring has a length of 0.26 m and a spring constant of 180 N/m. Two small charged objects are attached
MakcuM [25]

Answer:

a)

two like charges always repel each other while two unlike charges attract each other. Since the spring stretches by 0.039 m, the charges have the same sign. both charges are positive(+) or Negative (-)

b)

both q1 and q1 are 8.35 × 10⁻⁶ C or -8.35 × 10⁻⁶ C

Explanation:

Given that;

L = 0.26 m

k = 180 N/m

x = 0.039 m

a)

we know that two like charges always repel each other while two unlike charges attract each other. Since the spring stretches by 0.039 m, the charges have the same sign.

b)

Spring force F = kx

F = 180 × 0.039

F = 7.02 N

Now, Electrostatic force F = Keq²/r²

where r = L + x = ( 0.26 + 0.039 )

we know that proportionality constant in electrostatics equations Ke = 9×10⁹ kg⋅m3⋅s−2⋅C−2

so from the equation; F = Keq²/r²

Fr² = Keq²

q = √ ( Fr² / Ke )

we substitute

q = √ ( 7.02 N × ( 0.26 + 0.039 )² / 9×10⁹ )

q = √ ( 7.02 N × ( 0.26 + 0.039 )² / 9×10⁹ )

q =  √ (0.627595 / 9×10⁹)

q = √(6.97 × 10⁻¹¹)

q = 8.35 × 10⁻⁶ C

Therefore both q1 and q1 are 8.35 × 10⁻⁶ C or -8.35 × 10⁻⁶ C

5 0
3 years ago
Planets that are cold have only a small amount of gravity
Nonamiya [84]
There is no theoretical OR observational evidence for that statement.
4 0
4 years ago
Michael is doing an experiment. He wants to drop a bowling ball and a stuffed bear out the window of a tall building. Under what
Anon25 [30]

Answer:

If there was no air resistance

Explanation:

We know that free fall is a unique motion in which gravity only works on one object. Objects that are said to be free-falling do not experience a significant force of air resistance; They come under the sole effect of gravity. Under such conditions, all objects fall under the same acceleration, regardless of their mass.

6 0
3 years ago
What is the term to describe the rate of flow of electricity?
SVEN [57.7K]
The rate of flow of electric CHARGE past any point is described in the unit of electric CURRENT ... the Ampere.
7 0
3 years ago
A spaceship hovering over the surface of Venus drops an object from a height of 17 m. How much longer does it take to reach the
Paraphin [41]

1.96s and 1.86s. The time it takes to a spaceship hovering the surface of Venus to drop an object from a height of 17m is 1.96s, and the time it takes to the same spaceship hovering the surface of the Earth to drop and object from the same height is 1.86s.

In order to solve this problem, we are going to use the motion equation to calculate the time of flight of an object on Venus surface and the Earth. There is an equation of motion  that relates the height as follow:

h=v_{0} t+\frac{gt^{2}}{2}

The initial velocity of the object before the dropping is 0, so we can reduce the equation to:

h=\frac{gt^{2}}{2}

We know the height h of the spaceship hovering, and the gravity of Venus is g=8.87\frac{m}{s^{2}}. Substituting this values in the equation h=\frac{gt^{2}}{2}:

17m=\frac{8.87\frac{m}{s^{2} } t^{2}}{2}

To calculate the time it takes to an object to reach the surface of Venus dropped by a spaceship hovering from a height of 17m, we have to clear t from the equation above, resulting:

t=\sqrt{\frac{2(17m)}{8.87\frac{m}{s^{2} } }} =\sqrt{\frac{34m}{8.87\frac{m}{s^{2} } } }=1.96s

Similarly, to calculate the time it takes to an object to reach the surface of the Earth dropped by a spaceship hovering from a height of 17m, and the gravity of the Earth g=9.81\frac{m}{s^{2}}.

t=\sqrt{\frac{2(17m)}{9.81\frac{m}{s^{2} } }} =\sqrt{\frac{34m}{9.81\frac{m}{s^{2} } } }=1.86s

8 0
3 years ago
Read 2 more answers
Other questions:
  • Get the lead out! That is really graphite in your pencil, not lead. Graphite is a form of carbon. Use the physical properties of
    8·2 answers
  • What is sap?
    15·2 answers
  • PLEASE HELP..... Which of these statements is false
    11·1 answer
  • You have a resistor of resistance 200 ? and a 6.00-?F capacitor. Suppose you take the resistor and capacitor and make a series c
    11·1 answer
  • Aliens come blasting into our solar system and wipe out everything but the Sun, the Earth, and Jupiter. Discuss (conceptually) w
    10·1 answer
  • [Please help fast! Offering 100 points if it works!}
    13·2 answers
  • Fill in the blank.
    5·1 answer
  • 1150 g - 0.652 kg = ______________g?
    7·2 answers
  • What is the abbreviation for the SI unit for electric potential?<br> V<br> J<br> C<br> U
    13·1 answer
  • Identify what happens to the kinetic energy (KE) and gravitational potential energy (PE) of a rock as it falls.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!