Answer:
F=m x a
(F is force ,M is mass and A is acceleration)
in thisncase the Mass is given but we need to find ou the acceleration
Formula for acceleration-
a=(v - u)/t
(v is final velocity , u is initiatal velocity and t is time)
a = (0 - 80)/4
a= -80/4
a= -20
By substituting the values-
F= m x a
F= 1500 x -20
F=-30000N
Thus the force acted is -30000N
hope this helps
Answer:
The answer is D.
Explanation:
There is no gravity in Space so that means that it will decrease your weight but not your mass.
<h2><u><em>
Please give Brainiest</em></u></h2>
Answer: 38.2 μC
Explanation: In order to solve this problem we have to use the relationship for a two plate capacitor with a dielectric so:
C= Q/V= we also know that for two paralel plates C=εo*k*A/d and V=E/d
where k is the dielectric constant, A plate area, V is potential difference; E electric field and d the separation between the plates.
reorganizing we have:
Q/A=σ= E*k/εo= 1.2 * 10^6*3.6/8.85 * 10^-12=38.2μC
Answer:
0.21%
Explanation:
We are given;
Mass; m = 100 kg
Diameter; d = 2.2 mm = 2.2 × 10^(-3) m
Young's modulus; E = 12.5 x 10^(10) N/m².
Formula for area is;
A = πd²/4
A = (π/4) x (2.2 x 10^(-3))²
A = 3.8 x 10^(-6) m²
Force; F = mg
g is acceleration due to gravity and has a constant value of 9.8 m/s²
F = 100 × 9.8
F = 980 N
Formula for young's modulus is;
E = Stress/strain
Formula for stress = F/A
Formula for strain = ΔL/L
Thus;
E = (F/A)/(ΔL/L)
Making ΔL/L the subject, we have;
ΔL/L = (F/A)/E
Plugging in the relevant values;
ΔL/L = 980/(3.8 x 10^(-6) × 12.5 × 10^(10))
ΔL/L = 0.0021
Then percentage increase in length of a wire = 0.0021 × 100% = 0.21%